74 resultados para Electron Back Reaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetic studies on reactive extrusion have been carried out because of the inherent difficulties, as expected. In this work, we have studied chain propagation kinetics on melt grafting using pre-irradiated linear low density polyethylene (LLDPE) and three monomers, acrylic acid (AA), methacrylic acid (MAA), and methyl methacrylate (MMA), as the model system. We measured the apparent chain propagation rate coefficients of grafting (k(p,g)) and homopolymerization (k(p,h)) at an initial stage for the melt grafting by FT-IR spectroscopy and electron spin resonance spectroscopy. It was observed that the convective mixing affected the rate coefficients. The magnitude of k(p,h) and k(p,g) were in the same order, but k(p,h) was slightly larger than k(p,g) The k(p,g) of the three grafting systems increased in the order: LLDPE/MMA < LLDPE/MAA < LLDPE/AA. These results are explained in terms of phase separation, solubility, and inherent reactivity of the monomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the interaction mechanism between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical and spectroscopic methods. It was found that when the molar ratio of La3+, and MP-11 is low, such as 2, La3+ can coordinate with oxygen in the propionic acid group of the heme group in the MP-11 molecule, forming the La-MP-11 complexes and leading to the increase in the non-planarity of the porphyrin cycle in the heme group and then the increase in the extent of exposure of the electrochemically active center, Fe(I I I) in the porphyrin cycle of the heme group. The increase in the extent of exposure of the electrochemically active center, Fe(III) in the porphyrin cycle of the heme group would increase the reversibility of the electrochemical reaction of the La-MP-11 complexes and its electrocatalytic activity for the reduction of H2O2. The results of the chromatographic analysis demonstrated that the average molar ratio of La3+ and MP-11 in the La-MP-11 complexes is 1.62.When the molar ratio of La3+ and MP-11 is high, such as 3, La3+ would shear some amino acid residues of the peptide of MP-11. Therefore, many La3+ ions can bind to the oxygen- and/or nitrogen-containing groups in the sheared amino acid residues except coordinating with the sheared and non-sheared MP-11 molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica coating on Gd2O3:Eu particles was obtained by a simple method, e.g. solid-state reaction at room temperature. The urea homogeneous precipitation method was used to synthesize the Gd2O3:Eu cores. Transmission electron microscopy (TEM) shows that the core particles are spherical with submicrometer size which is the soft agglomerates with nanometer crystallites. The TEM morphology of coated particles shows that a thin film is coated on the surface of Gd2O3:Eu cores. Scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analysis indicate that the coating of silica can be used to avoid agglomeration of Gd2O3:Eu particles to obtain smaller particles. X-ray photoelectron spectra (XPS) show that silica is coated on the surface of core particles by forming the chemical bond. Photoluminescence (PL) spectra conform that Gd2O3:Eu phosphors remain well-luminescent properties by the silica coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two kinds of macrocyclic arylene ketone oligomers have been synthesized in high yield from phthaloyl dichloride and various bridge-linking electron-rich aromatic hydrocarbons via the modified Friedel-Crafts acylation reaction. The presence of a Lewis base in this reaction is demonstrated to be advantageous for forming macrocycle oligomers. These resultant oligomers can undergo melt ring-opening polymerization to give polymers with high T. and excellent thermal stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a new route for the design of soluble phenylene vinylene (PV) based electroluminescent polymers bearing electron-deficient oxadizole (OXD) and triazole (TZ) moieties in the main chains with the aryloxy linkage. Both series of the PV-based polymers were prepared by Wittig reaction. By properly adjusting the OXD and/or TZ content through copolymerization, we can achieve an enhanced balance of hole- and electron injections, such that the device efficiency is significantly improved. Light-emitting diodes fabricated from P1, P2, P3, P4, P5, P6, and P7 with the configuration of Indium-Tin Oxide (ITO)/Poly (styrene sulfonic acid) doped poly (ethylenedioxythiophene) (PEDOT)/polymer/Ca/Al, emit bright green light with the maximum peak around 500 nm. For the device using the optimal polymer (P4) as emitting layer, a maximum brightness of 1300 cd/m(2) at 20 V and a maximum luminance efficiency of 0.325 cd/A can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of a heterogeneous electron-transfer (ET) reaction at the water/1,2-dichloroethane interface employing a double-barrel micropipet technique is reported. The chosen system was the reaction between Fe(CN)(6)(3-) in the aqueous phase (W) and ferrocene in 1,2-dichloroethane (DCE). According to the generation and the collection currents as well as collection efficiency, the ET-ion-transfer (IT) coupling process at such an interface and competing reactions with the organic supporting electrolyte in the organic phase can be studied. In addition, this technique has been found to be an efficient method to distinguish and measure the charge-transfer coupling reaction between two ions (IT-IT) processes occurring simultaneously at a liquid/liquid interface. On this basis, the formal Gibbs energies of transfer of some ions across the W/DCE interface, such as NO3-, NO2-, Cl-, COO-, TBA(+), IPAs+, Cs+, Rb+, K+, Na+, and Li+, for which their direct transfers are usually difficult to obtain because of the IT-IT coupling processes, were quantitatively evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) is employed to investigate the effect of solution viscosity on the rate constants of electron transfer (ET) reaction between potassium ferricyanide in water and 7,7,8,8-tetracyanoquinodimethane (TCNQ) in 1,2-dichloroethane. Either tetrabutylammonium (TBA(+)) or ClO4- is chosen as the common ion in both phases to control the interfacial potential drop. The rate constant of heterogeneous ET reaction between TCNQ and ferrocyanide produced in-situ, k(12), is evaluated by SECM and is inversely proportional to the viscosity of the aqueous solution and directly proportional to the diffusion coefficient of K4Fe(CN)(6) in water when the concentration of TCNQ in the DCE phase is in excess. The k(12) dependence on viscosity is explained in terms of the longitudinal relaxation time of the solution. The rate constant of the heterogeneous ET reaction between TCNQ and ferricyanide, k(21), is also obtained by SECM and these results cannot be explained by the same manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of La3+ on the electrochemical behavior and structure of heme undecapeptide-microperoxidase-11 (MP-11)-in the aqueous solution was investigated using cyclic voltammetry, circular dichroism (CD) and UV-vis absorption spectrometry. It was found for the first time that La3+ would promote the electrochemical reaction of MP-11 at the glassy carbon (GC) electrode. This is mainly due to the fact that La3+ would induce more beta-turn and alpha-helical conformations from the random coil conformation of MP-11 and increase the non-planarity of the heme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We synthesized a kind of gold nanoparticle protected by a synthetic lipid (didodecyidimethylammonium bromide, DDAB). With the help of these gold nanoparticles, hemoglobin can exhibit a direct electron transfer (DET) reaction. The formal potential locates at -169 mV vs. Ag/AgCl. Spectral data indicated the hemoglobin on the electrode was not denatured. The lipid-protected gold nanoparticles were very stable (for at least 8 months). Their average diameter is 6.42 nm. It is the first time to use monolayer-protected nanoparticles to realize the direct electrochemistry of protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis Of SiO2 coated CeO2 nanoparticles by humid solid state reaction at room. temperature is described. Transmission electron microscope results show that CeO2 Particles were coated with a layer Of SiO2. Binding energy of Ce 3d(5/2) was shifted from 883.8 to 882.8 eV after coating in the XPS Ce 3d spectra. This confirms the chemical bond formation between SiO32- and Ce4+. Because the surface photovoltage property of CeO2 nanoparticles that were used as core materials in the experiment approaches to that of CeO2 macroparticles, peak P2 (electron transition from 0 2p on surface to Ce 4f) disappeared in the surface photovoltage spectrum of CeO2 nanoparticles. Also, the effect Of SiO2 on the electron transition from 0 2p to Ce 4f results in the lowering of surface photovoltage response intensity of P1 peak (electron transition from 0 2p in bulk to Ce 4f).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humid solid state reaction at room temperature was utilized for the first time to coat Y2O3 : Eu3+ particles with alumina. The particles were studied with an X-ray photoelectron spectrometer (XPS), a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS). XPS results show that the yttrium and europium contents are decreased and that the aluminum content is the highest except for that of oxygen after coating. SEM and EDS results show that particles are coated with a thin shell of alumina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long lasting phosphorescence (LLP) phenomenon in Mn2+-doped ceramic based on ZnO-Al2O3-SiO2 (ZASM) is observed. After irradiation by a UVP standard mercury lamp peaking at 254 nm with a power of 0.6 mW/cm(2) for 15 min, the ceramic sample emits a bright green light peaking at 519 nm, which can be seen in the dark even 15 h after the removal of UVP standard mercury lamp by the naked eyes whose limit of light perception is 0.32 mcd/m(2). The initial afterglow intensity reaches about 1900 mcd/m(2), and the color coordinate (X, Y) is (0.2280, 0.5767) at about 10 s after stopping irradiation. The thermoluminescence (TL) spectra show that there are at least three kinds of trap centers with different trap levels while electron spin resonance (ESR) spectra indicate that there are electron- and hole-trapping centers induced after irradiation by a UVP standard mercury lamp. Based on these measurements, the LLP is considered to be due to the recombination of electrons and holes at trapping centers with different levels, which are firstly thermally released back to Mn2+ and then give rise to the bright green LLP at room temperature.