413 resultados para ELECTRODE SURFACES
Resumo:
Non-steady-state chronoamperometry of ultramicroelectrodes is a powerful method for the study of mass transport in polymer films. This method has many advantages over the conventional methods at a macroelectrode and the steady state method at an ultramicroelectrode, which yield the most information. The apparent diffusion coefficient, D(app), and the concentration of reactant in the film, c(f), can be determined from a single experiment without knowing the thickness of the film. We studied the transport of several species such as Ru(NH3)63+, Ru(bpy)3(2+), NR and MV2+ in Eastman-AQ polymer film coated ultramicroelectrodes by using this method.
Resumo:
细胞在材料表面的黏附对细胞的增殖和分化起重要作用。格式化表面提供了对细胞在基底的空间分布和动附进行控制的方法。利用微制作形成的格式模板,分别以微接触转印法和微流道法形成格式化表面,使MC3T3-E1成骨细胞以一定的格式黏附于表面上。在微接触转印法形成的含二氯二甲基硅烷(DMS)的疏水区域和不含DMS的亲水区域相间隔的表面,细胞优先在亲水区域黏附。在微流道法形成的胶原和白蛋白格式化表面,细胞优先黏附于含胶原区域。结果还表明微格式化表面可以用于研究表面的物理化学性质对细胞的黏附等功能的影响。
Resumo:
Based on the statistical thermodynamics theory, a theoretical model of adsorbate induced surface stress of adatoms adsorption on solid surface is presented. For the low coverage, the interaction between the adsorbed molecules is entirely negligible and the adsorption induced surface stress is found to be the function of the coverage and the adsorption energy change with strain. For the high coverage, the adsorbate-adsorbate interaction contributes to the adsorption-induced surface stress effectively. In the case of carbon adsorption on the Ni(100) surface, the value of 0.5 is obtained as a characteristic coverage to decide whether to take the interaction between the adsorabtes into consideration and the results also show that the adsorption induces a compressive surface stress.
Resumo:
Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact angle for the liquid droplet can result from the surface microstructures and the external electric field, without altering the chemical composition of the system. During the electrowetting process on a rough surface, the droplet exhibits a sharp transition from the Cassie-Baxter to the Wenzel regime at a low critical voltage. In this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to be in good agreement with the existing experimental results. (c) Koninklijke Brill NV, Leiden, 2008.
Resumo:
This paper studies the surface melting in the atmosphere by YAG laser-guided micro-arc discharge. In three kinds of surface conditions (free, oiled, and polyethylene covered), we try to control the diameter and the power density of discharge pit. It is found that the power density of 3 x 10(6) W/cm(2) of discharge pit on the oiled surface is moderate to form the melted layer thicker than that of the others, adapting to strengthen the surface of material, and the power density of 1.07 x 10(7) W/cm(2) of discharge pit on the polyethylene-covered surface is highest to form the deepest discharge pit among them, adapting to remove the material.
Resumo:
Human serum albumin adsorption onto gold surfaces was investigated by electrochemical and ellipsometric methods. Albumin adsorption onto gold was confirmed by the change of the open circuit potential of gold and by the ellipsometric parameter variation during albumin immobilization. In both experiments the parameters reached stable values within 10-15 min. The albumin adsorption layer thickness measured with the ellipsometer was about 1.5 nm. The adsorption of albumin Under applied potential was also investigated and it was found that both positive and negative applied potential promote albumin adsorption. Changes in the optical parameters of bare gold and albumin adsorbed onto gold surface under applied potential were investigated with in Situ ellipsometry. The similarity and reversibility of the optical changes showed that adsorbed albumin was stable on the gold surface Under the applied potential range (-200-600 mV). The cyclic voltammograms of K3Fe(CN)(6) on the modified gold surface showed that albumin Could partly block the oxidation and reduction reaction. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Molecular dynamics (MD) simulations are performed to study the interaction of His-tagged peptide with three different metal surfaces in explicit water. The equilibrium properties are analyzed by using pair correlation functions (PCF) to give an insight into the behavior of the peptide adsorption to metal surfaces in water solvent. The intermolecular interactions between peptide residues and the metal surfaces are evaluated. By pulling the peptide away from the peptide in the presence of solvent water, peeling forces are obtained and reveal the binding strength of peptide adsorption on nickel, copper and gold. From the analysis of the dynamics properties of the peptide interaction with the metal surfaces, it is shown that the affinity of peptide to Ni surface is the strongest, while on Cu and An the affinity is a little weaker. In MD simulations including metals, the His-tagged region interacts with the substrate to an extent greater than the other regions. The work presented here reveals various interactions between His-tagged peptide and Ni/Cu/Au surfaces. The interesting affinities and dynamical properties of the peptide are also derived. The results give predictions for the structure of His-tagged peptide adsorbing on three different metal surfaces and show the different affinities between them, which assist the understanding of how peptides behave on metal surfaces and of how designers select amino sequences in molecule devices design. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two-dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically together with the momentum and energy equations in the laminar boundary layer with variable density effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the wall are influenced by the density variation effect for external flow past bodies. The general numerical procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples of thermophoretic deposition of particles in flows past a cold cylinder and a sphere.
Resumo:
Some of the calculated parameters show a maximum value for specimens heat-treated at about 100°C. The tensile strength is, for instance, substantially higher for specimens shock-heated at 100°C than for non-heated ones. Another striking feature is the initial decrease of the diameter observed in specimens heat-treated at 600°C when loaded in uniaxial compression. Both optical microscopy and DSA experiments reveal a large increase in microcracking when the heat-treatment temperature exceeds 300°C.
Resumo:
Recent experiments have found that slip length could be as large as on the order of 1 mu m for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths, which cannot be obtained by molecular dynamics simulation alone.
Resumo:
Recent experiments have found that slip length could be as large as on the order of 1 mu m for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths which cannot be obtained by molecular dynamics simulation alone.
Resumo:
We present a method of image-speckle contrast for the nonprecalibration measurement of the root-mean-square roughness and the lateral-correlation length of random surfaces with Gaussian correlation. We use the simplified model of the speckle fields produced by the weak scattering object in the theoretical analysis. The explicit mathematical relation shows that the saturation value of the image-speckle contrast at a large aperture radius determines the roughness, while the variation of the contrast with the aperture radius determines the lateral-correlation length. In the experimental performance, we specially fabricate the random surface samples with Gaussian correlation. The square of the image-speckle contrast is measured versus the radius of the aperture in the 4f system, and the roughness and the lateral-correlation length are extracted by fitting the theoretical result to the experimental data. Comparison of the measurement with that by an atomic force microscope shows our method has a satisfying accuracy. (C) 2002 Optical Society of America.