159 resultados para Doped materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous glass with high-SiO2 content was impregnated with Nd ions, and subsequently sintered at 1100 degrees C into a compact non-porous glass in air or reducing atmosphere. Sintering in a reducing atmosphere produced an intense violet-blue fluorescence at 394 nm. However, the sintering atmospheres almost did not affect the fluorescence properties in the infrared range. A good performance Nd3+-doped silica microchip laser operating at 1064 nm was demonstrated. The Nd-doped sintering glasses with high-SiO2 content are potential host materials for high power solid-state lasers and new transparent fluorescence materials. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luminescences from bismuth-doped lime silicate glasses were investigated. Luminescences centered at about 400, 650, and 1300 nm were observed, excited at 280, 532 and 808 nm, respectively. These three luminescence bands arise from three different kinds of bismuth ions in the glasses. The visible luminescences centered at 400 and 650 nm arise from Bi3+, and Bi2+, respectively. The infrared luminescences cover the wavelength range from 1000 to 1600 nm when exited by an 808 nm laser diode. The full width at half maximum (FWHM) of the infrared luminescences is more than 205 urn. The intensity of the infrared luminescence decreases with the increment in CaO content. We suggest that the infrared luminescences might arise from Bi+. Such broadband luminescences indicate that the glasses may be potential candidate material for broadband fiber amplifiers and tunable lasers. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New broadband near infrared luminescence covering the whole work windows (1260-1625 nm) of the current wavelength division multiplexing (WDM) system was found from bismuth-activated M2O-Al2O3-SiO2 (M = Li, Na) and Li2O-Ta2O5-SiO2 glasses at room temperature in the case of 808 nm-laser excitation. But the near infrared luminescence mechanism of the bismuth-activated glasses is not well understood up to now. The figure-of-merits of bandwidth and gain of the glasses are better than those of Er3+-doped silicate glasses and Ti3+ doped sapphire, implying they are the promising gain-medium candidates for the broadband amplifiers and the widely tunable laser sources. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eu2+-doped high silica glass (HSG) is fabricated by sintering porous glass which is impregnated with europium ions. Eu2+-doped HSG is revealed to yield intense blue emission excited by ultraviolet (UV) light and near-infrared femtosecond laser. The emission profile obtained by UV excitation can be well traced by near-infrared femtosecond laser. The upconversion emission excited by 800 nm femtosecond laser is considered to be related to a two-photon absorption process from the relationship between the integrated intensity and the pump power. A tentative scheme of upconverted blue emission from Eu2+-doped HSG was also proposed. The HSG materials presented herein are expected to find applications in high density optical storage and three-dimensional color displays. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A colorless transparent, blue green emission material was fabricated by sintering porous glass impregnated with copper ions. The emission spectral profile obtained from Cu+ -doped high silica glass (HSG) by 267-mn monochromatic light excitation matches that obtained by pumping with an 800-nm femtosecond laser, indicating that the emissions in both cases come from an identical origin. The upconversion emission excited by 800-nm femtosecond laser is considered to be a three-photon excitation process. A tentative scheme of upconverted emission from Cu+ -doped HSG was also proposed. The glass materials presented herein are expected to find application in lamps, high density optical storage, and three-dimensional color displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman scattering experiments for nominally pure and uranium doped CaF2 single crystals were presented. In all crystals, the Raman active T_(2g) vibration mode of CaF2 was observed, whose frequency shift and full-width at half-maximum (FWHM) broadening correspond well with defects and impurities in CaF2 lattice. Additional Raman peaks develop in nominally pure CaF2 with high etch pits density and U^(6+):CaF2 crystals. Part of additional Raman peaks in the experimental results, which are assumed due to vibration modes from F- interstitials and vacancies, are in well agreement with the theoretical predications by employing the Green-function formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prepare bismuth-doped borosilicate glasses and the luminescence properties in infrared wavelength region are investigated. Transmission spectrum, fluorescence spectrum and fluorescence decay curve are measured. The glasses exhibit a broad infrared luminescence peaking at 1340nm with the full width at half maximum of about 205nm, and lifetime of 273 mu s when excited by an 808-nm laser diode. The glasses are promising materials for broadband optical amplifiers and tunable lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a new method for fabricating rare-earth-doped silica glasses for laser materials obtained by sintering nanoporous silica glasses impregnated with rare-earth-doped ions. The fabricated materials have no residual pores and show good optical and mechanical properties. Good performance from a Nd3+-doped silica microchip laser operating at 1.064 mum is successfully demonstrated, suggesting that the fabricated silica glasses have potential for use as active materials for high-power solid-state lasers. (C) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observation of room-temperature ferromagnetisin in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1-xNix)(2)O-3 (0 <= x <= 0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at roomtemperature. The highest saturation magnetization (0.453 mu B/Fe + Ni ions) moment is reached in the sample with x = 0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline Zn0.95-xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an autocombustion method. X-ray absorption spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry and Ni 2p core-level photoemission spectroscopy analyses revealed that some of the nickel ions were substituted for Zn2+ into the ZnO matrix while others gave birth to NiO nanoclusters embedded in the ZnO particles. The Zn0.95Ni0.05O sample showed no enhancement of room-temperature ferromagnetism after Al doping. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce3+:( Lu0.7Y0.25La0.05)(2)O-3 transparent ceramics were fabricated with nanopowders and sintered in H-2 atmosphere. The spectral properties of Ce3+:( Lu0.7Y0.25La0.05)(2)O-3 transparent ceramics were investigated and the luminescence of Ce3+ in the solid solution of Lu2O3, Y2O3 and La2O3 has been found. The ceramics has high density of 8.10g/cm(3) and short fluorescence lifetimes of 7.15 ns and 26.92 ns. It is expected to be a good fast response high temperature inorganic scintillating materials. (C) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ytterbium-doped calcium pyroniobate single crystal has been grown for the first time. Spectral properties of Yb: Ca2Nb2O7 were investigated by emission and absorption spectra. Its cooperative luminescence and fluorescence lifetime were also studied. Yb ions in Ca2Nb2O7 showed very broad absorption and emission bandwidth and relatively large absorption and emission cross-sections. Along with other optical properties, this Yb-doped crystal would be a potential self-frequency doubling femtosecond laser gain material. (C) 2007 Published by Elsevier B.V.