57 resultados para Disturbances,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

以利用线加速度传感器实际测量转动关节的加速度为基础 ,分析了机器人关节加速度反馈控制的开环模型 ,以及影响其闭环稳定性的主要因素 ;提出了闭环控制策略的设计准则 .在一台三自由度直接驱动机器人上的实验结果证明了该文分析的正确性 ,与不具备加速度反馈控制时的实验结果相比较 ,显示出这种方法的有效性

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文为工业机器人提出了一种极点配置控制法.这种控制方法的优点有:一是它的积分作用消除了机器人的微小扰动和稳态误差;二是能任意设置系统的极点,因此能保证闭环系统的稳定性和规定状态变量的暂态响应;三是加入了加速度反馈,抑制了由电枢电感所引起的机械手的振动.最后,给出了PUMA562机器人的计算机仿真和实验结果验证了此控制法的有效性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文提出了广义预测极点配置前馈自校正控制算法,计算机仿真结果表明,该算法控制质量好,能够消除系统可测扰动对输出的影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dynamic model is built up by means of system dynamics method for the development offorest resources in Liaoning province.Prediction and strategy research are made for the fo-rest ecology and timber production in 2000 in Liaoning.The impactions of various designson the development of forest resources are understood by adjusting different parameters andadding disturbances to the model.Various parameters are determined according to the dataprovided by Land Dept.and Forestry Dept.of Liaoning province,the data of provincialforest statistics in 1978 is taken as the original values for running model,which is perfor-med on IBM PC/X7 computer in DYNAMO language of system dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对EMS型磁悬浮列车悬浮系统的非线性、迟滞性及模型不确定的特点,本文采用了模糊自适应整定PID控制技术来满足其对动态和静态性能的要求。仿真结果表明模糊自适应整定PID控制器学习精度高、收敛速度快、在系统同时存在磁悬浮系统参数的变化和负载扰动时.具有较强的鲁棒性和抗干扰能力。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic storm is a kind of severe disturbances in the whole solar-earth electromagnetic space. It has significant effects on communication, electric power, oil transport pipe and human activities in space. Therefore, magnetic storms are worth for applications systems, not only being a favorable issue for scientists. In this paper, the spatial and temporal distributions of the magnetic fields produced by the magnetosphere-ionosphere current systems during storms are studied. Four parts are included in this paper decomposion of different disturbances with different origins, topological structure of the ring current, the asymmetric characteristics of the ring current, and the statistic peculiarities of the day-to-day variability (DTD) of Sq. 1 The decomposition of magnetic disturbances at mid-low latitudes and its evolutions during storms Transient variations in the geomagnetic field recorded at mid-low latitudes mainly include the storm-time variation (Dst), solar quiet daily variation (Sq) and disturbance daily variation (SD). With the data of the geomagnetic meridian chain observatories in China, 25 storms during the period of 1997 to 1999 have been analyzed. According to the features of different variations, a method of “three-steps decomposition” is developed by using the method of Natural Orthogonal Components (NOC), Correlation Analysis and Fourier Analysis to separate those three components in turn. The results show that, the first eigenmode by the MNOC clearly describing the special distribution and temporal evolution of storm-time variation, in addition, Correlation Analysis and Fourier Analysis offer a useful method to extract the Sq and SD variations. The latitudinal shift of the Sq current focus seems to be the principal reason of the day-to-day variaitons in the daily range of Sq. The magnitude of SD reaches a maximum during the main phase, and then gradually decreases. 2 The topology structure of the ring current during storms Both the mechanism of the ring current and the geomagnetic data suggest that the central plane of the ring current is declining to the geomagnetic equator plane with a tilt angle δ. Using the H and Z component data at two stations in a meridian chain, we deduce a new parameter describing the invariable peculiarity of different storms. Then the δ angle is calculated by using the data from a meridian chain and tested with the ERC model. Finally the deduced tilt angles are used to modify Dst index. 3 The asymmetric characteristics of the ring current during storms The variations of the geomagnetic field at mid-low latitudes show a significant dawn-dusk asymmetry, resulting from the superposition of the fields from the symmetric ring current and the partial ring current. On the basis of the data from the 20°E, 30°E meridian chains and 30°N latitudinal chain, the dawn-dusk asymmetry is investigated by using three methods, namely, statistic analysis, ring current model calculation and typical event analysis. This characteristic implies the asymmetry of the spatial distribution of the ring current. In addition, during the main phase after the sudden commencement (SC), H field increases and reaches maximum around noontime, implying the effect of the Chapman-Ferraro current. 4 The statistic characteristics of the day-to-day variability and its mechanism The day-to-day variability of the geomagnetic Sq field is studied by using the magnetic data from a meridian chain of magnetometers along 120° E longitude. The method of NOC is applied to separate the Sq variation from complicated disturbances. The first eigenmode with the largest eigenvalue represents fairly well the Sq variation with a conspicuous day-to-day variability in the daily range. For the stations on the same north- or south-side of the Sq current system focus, the day-to-day variations show a positive correlation. In contrast, for the stations on the different sides of the Sq focus, they show a negative correlation, suggesting an important role of latitudinal shift of the Sq current system focus to the day-to-day variability of the Sq daily range. The Sq daily range is correlated with the magnetic indices Ap and Dst in a peculiar way: on some severe disturbed days, noticeably enhancements of the Sq are observed, implying increases of the ionospheric conductivities and/or tidal wind velocities; on other severe disturbed days, however, dramatically reduced Sq variations occur, suggesting dominant effects of the ‘disturbance dynamo’ process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation, we investigated two types of traveling ionospheric disturbances (TIDs)/gravity waves (GWs) triggered separately by auroral energy input during super geomagnetic storms and solar terminator (ST) under quiet geomagnetic conditions (kp<3+) using TEC measurements from the global network of GPS receivers. Research into the generation and propagation of TIDs/GWs during storms greatly enhance our understandings on the evolution processes of energy transportation from the high-latitude’s magnetosphere to the low-latitude ionosphere and the conjugated effect of TIDs propagation between the northern and southern hemispheres. Our results revealed that the conjugacy of propagation direction between the northern and southern hemispheres was subject to the influence of Coriolis force. We also figure out the evolution processes of ionospheric disturbances at the global scale. These are important topics that had not been well addressed previously. In addition, we also obtained thee wave structures of medium scale TIDs excited by the solar terminator (ST) moving over the northern America and physical mechanisms involved. Our observations confirm that the ST is a stable and repetitive source of ionospheric wave disturbances and the evidence of solar terminator generated disturbances has been demonstrated experimentally via the GPS TEC measurement. The main researches and results of this dissertation are as follows. First, the global traveling ionospheric disturbances (TIDs) during the drastic magnetic storms of October 29–31, 2003 were analyzed using the Global Position System (GPS) total electron content (TEC) data observed in the Asian-Australian, European and North American sectors. We collected the most comprehensive set of the TEC data from more than 900 GPS stations on the International GNSS Services (IGS) website and introduce here a strategy that combines polynomial fitting and multi-channel maximum entropy spectral analysis to obtain TID parameters. Moreover, in collaboration with my thesis advisor, I have developed an imaging technique of 2-dimensional map of TIDs structures to obtain spatial and temporal maps of large scale traveling ionospheric disturbances (LSTIDs). The clear structures of TEC perturbations map during the passage of TIDs were displayed. The results of our study are summarized as follows: (1) Large-scale TIDs (LSTIDs) and medium-scale TIDs (MSTIDs) were detected in all three sectors after the sudden commencement (SC) of the magnetic storm, and their features showed longitudinal and latitudinal dependences. The duration of TIDs was longer at higher latitudes than at middle latitudes, with a maximum of about 16 h. The TEC variation amplitude of LSTIDs was larger in the North American sector than in the two other sectors. At the lower latitudes, the ionospheric perturbations were more complicated, and their duration and amplitude were relatively longer and larger. (2) The periods and phase speeds of TIDs were different in these three sectors. In Europe, the TIDs propagated southward; in North America and Asia, the TIDs propagated southwestward; in the near-equator region, the disturbances propagated with the azimuth (the angle of the propagation direction of the LSTIDs measured clockwise from due north with 0°) of 210° showing the influence of Coriolis force; in the Southern Hemisphere, the LSTIDs propagated conjugatedly northwestward. Both the southwestward and northeastward propagating LSTIDs are found in the equatorial region. These results mean that the Coriolis effect cannot be ignored for the wave propagation of LSTIDs and that the propagation direction is correlated with the polar magnetic activity. (3) The day (day of year: 301) before the SC (sudden commencement) of magnetic storm, we observed a sudden TEC skip disturbances (±10 TECU). It should be a response for the high flux of proton during the solar flare event, but not the magnetic storms. Next, the most comprehensive and dense GPS network’s data from North-America region were used in this paper to analyze the medium scale traveling ionospheric disturbances (MSTIDs) which were generated by the moving solar terminator during the quiet days in 2005. We applied the multi-channel maximum entropy spectral analysis to calculated TID parameters, and found that the occurrence of ST-MSTIDs depends on the seasonal variations. The results of our study are summarized as follows: (1) MSTIDs stimulated by the moving ST (ST-MSTIDs) are detected at mid-latitudes after the passage of the solar terminator with the life time of 2~3 hours and the variation amplitude of 0.2~0.8 TECU. Spectral analysis indicated that the horizontal wavelength, average period, horizontal phase velocity of the MSTIDs are around 300±150 km,150±80 m/s and 25±15 min, respectively. In addition, ST-MSTIDs have wave fronts elongating the moving ST direction and almost parallel to ST. (2) The statistical results demonstrate that the dusk MSTIDs stimulated by ST is more obvious than the dawn MSTIDs in summer. On the contrary, the more-pronounced dawn MSTIDs occurs in winter. (3) Further analysis indicates that the seasonal variations of ST-MSTIDs occurrence frequency are most probably related to the seasonal differences of the variations of EUV flux in the ionosphere region and recombination process during sunrise and sunset period at mid-latitudes. Statistical study of occurrence characteristics of TIDs using the GPS network in North-American and European during solar maximum, In conclusion, statistical studies of the propagation characteristics of TIDs, which excited by the two common origins including geomagnetic storms and moving solar terminator, were involved with global GPS TEC databasein this thesis. We employed the multichannel maximum entropy spectral analysis method to diagnose the characteristics of propagation and evolvement of ionospheric disturbances, also, the characteristics of their regional distribution and climatological variations were revealed by the statistic analysis. The results of these studies can improve our knowledge about the energy transfer in the solar-terrestrial system and the coupling process between upper and lower atmosphere (thermosphere-ionosphere-mesosphere). On the other hand, our results of the investigation on TIDs generated by particular linear origin such as ST are important for developing ionospheric irregularity physics and modeling the transionosphere radio wave propagation. Besides, the GPS TEC representation of the ST-generated ionospheric structure suggests a better possibility for investigating this phenomenon. Subsequently, there are scientific meaning of the result of this dissertation to deeply discuss the energy transfer and coupling in the ionosphere, as well as realistic value to space weather forecast in the ionosphere region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a key issue of ionospheric weather study, systemic studies on ionospheric storms can not only further improve our understanding of the response of the ionosphere to solar and geomagnetic disturbances, but also help us to reveal the chemical, dynamic and electro-dynamic mechanisms during storms. Empirical modelling for regional ionospheric storm is also very useful, because it can provide us with tools and references for the forecasting and further practical application of ionospheric activity. In this thesis, we focus on describing and forecasting of ionospheric storms at middle and low latitudes. The main points of my investigations are listed as follows. (1) By using magnetic storms during the period over 50 years, the dependence of the type, onset time and time delay of the ionospheric storms on magnetic latitude, season and local time at middle and low latitudes in the East-Asian sector are studied. The results show that the occurrences of the types of ionospheric disturbances differ in latitude and season. The onset of the ionospheric storms depends on local time. At middle latitudes, most negative phase onsets are within the local time interval from night to early morning, and they rarely occurred in the local noon and afternoon sectors. At low latitudes, positive phases commence most frequently in the daytime sector as well as pre-midnight sector. The average time delays for both the positive and negative ionospheric storms increase with descending latitudes. The time delay has significant dependence on the local time of main phase onset (MPO). The time delay of positive response is shorter for daytime MPO and longer for night-time MPO, whereas the opposite applies for negative response. (2) Based on some previous researches, a primary empirical model for mid-latitude ionospheric disturbance is set up. By fitting to the observed data, we get a high accuracy with a mean RMSE of only 12-14% in summer and equinox. The model output has been compared with the output of STORM model, and the results show that, our model is much better than STORM in summer and a little better for some mid-latitude stations at equinox. Especially, for the type of two-step geomagnetic storm, our model can present twice descending of foF2 very well. In addition, our model can forecast positive ionospheric storms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic Gravity waves (AGW) play an important role in balancing the atmospheric energy and momentum budget. Propagation of gravity wave in the atmosphere is one of the important factors of changing middle and upper atmosphere and ionosphere. The purpose of this dissertation is to study the propagation of gravity wave in a compression atmosphere whit means of numerical simulation and to analyze the response of middle and upper atmosphere to pulse disturbance from lower atmosphere. This work begins with the establishment of 2-D fully nonlinear compressible atmospheric dynamic model in polar coordinate, which is used ton numerically study gravity wave propagation. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. We also simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model and analyze the data we obtained by using Fourier Transform (FT), Short-time Fourier Transform (STFT) and Empirical Mode Decomposition (EMD) method which is an important part of Hilbert-Huang Transform (HHT). The research content is summarized in the following: 1. By using a two-dimensional full-implicit-continuous-Eulerian (FICE) scheme and taking the atmospheric basic motion equations as the governing equations, a numerical model for nonlinear propagation of acoustic gravity wave disturbance in two-dimensional polar coordinates is solved. 2. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. Results of numerical simulation show that the acoustic gravity wave packets propagate steadily upward and keep its shape well after several periods. 3. We simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model, and obtain the distribution of a certain physical quantity in time and space from earth’s surface to 300km above. The results reveal that the response of ionosphere occurs at a large horizontal distance from the source and the disturbance becomes greater with increasing of height. The situation when the direction of the background wind is opposite to or the same as the direction of disturbed velocity of gravity-wave is studied. The results show that gravity wave propagating against winds is easier than those propagating along winds and the background wind can accelerate gravity wave propagation. Just upon the source, an acoustic wave component with period of 6 min can be found. These images of simulation are similar to observations of the total electron content (TEC) disturbances caused by the great Sumatra-Andaman earthquake on December 26 in 2004. 4. Using the EMD method the disturbed velocity data of a certain physical quantity in time and space can be decomposed into a series of intrinsic mode function (IMF) and a trend mode respectively. The results of EMD reveal impact of the gravity wave frequency under the background winds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ionosphere is the ionized component of the Earth's upper atmosphere. Solar EUV radiation is the source of ionospheric ionization. Thus the ionosphere is affected strongly by the variations in solar radiation. Solar flares and solar eclipses can induce remarkable short time changes in solar radiation: the solar radiation would increase suddenly during solar flares and decrease significantly during solar eclipses. Solar flare and eclipse events not only affect directly the photochemical processes, but also affect the dynamic processes, and even affect the neutral atmosphere, which is strongly coupled with the ionosphere. The study on the ionospheric response to solar flares and eclipses can advance our knowledge on the ionosphere and its photochemical and dynamic processes and help us to evaluate the ionospheric parameters (such as ion loss coefficients). In addition, the study on the ionospheric responses to solar flares and eclipses is an important part of the ionospheric space weather, which can provide guides for space weather monitoring. This thesis devotes to the study on the ionospheric responses to solar flares and solar eclipses. I have developed two models to simulate the variations of solar EUV radiation during solar flares and solar eclipses, and involved in developing a 2D mid- and low-latitude ionospheric model. On the basis of some observed data and the ionospheric model, I study the temporal and spatial variations of the ionosphere during solar flares and eclipses, and investigate the influences of solar activity, solar zenith angle, neutral gas density, and magnetic dip angle on the ionospheric responses to solar flares and solar eclipses. The main points of my works and results are summarized as follows. 1. The ionospheric response to the X17.2 solar flare on October 28, 2003 was modeled via using a one-dimension theoretical ionospheric model. The simulated variation of TEC is in accordance with the observations, though there are some differences in the amplitude of the variation. Then I carried out a series of simulations to explore the local time and seasonal dependences of the ionospheric responses to solar flares. These calculations show that the ionospheric responses are largely related with the solar zenith angle (SZA). During the daytime (small SZA), most of the increases in electron density occur at altitudes below 300 km with a peak at around 115 km; whereas around sunrise and sunset (SZA>90°), the strongest ionospheric responses occur at much higher altitudes. The TEC increases slower at sunrise than at sunset, which is caused by the difference in the evolution of SZA at sunrise and sunset: SZA decreases with time at sunrise and increase with time at sunset. The ionospheric response is largest in summer and smallest in winter, which is also related to the seasonal difference of SZA. 2. Based on the observations from the ionosondes in Europe and the ionospheric model, I investigated the differences of the ionosphere responses to solar eclipses between the E-layer and F1-layer. Both the observation and simulation show that the decrease in foF1 due to the solar eclipses is larger than that in foE. This effect is due to that the F1 region locates at the transition height between the atomic ion layer and the molecular ion layer. With the revised model of solar radiation during solar flares, our model calculates the radiations from both the inside and outside of photosphere. Large discrepancy can be found between the observations and the calculations with an unrevised model, while the calculations with the revised model consist with the observations. 3. I also explore the effects of the F2-layer height, local time, solar cycle, and magnetic dip angle on the ionospheric responses to solar eclipses via using an ionospheric model and study on the solar zenith angle and the dip dependences by analyzing the data derived from 23 ionosonde stations during seven eclipse events. Both the measured and simulated results show that these factors have significant effect on the ionospheric response. The larger F2-layer height causes the smaller decrease in foF2, which is because that the electron density response decreases with height. The larger dip results in the smaller eclipse effect on the F2 layer, because the larger dip would cause the more diffusion from the top ionosphere which can make up for the plasma loss. The foF2 response is largest at midday and decreases with the increasing SZA. The foF2 response is larger at high solar activity than at low solar activity. The simulated results show that the local time and solar activity discrepancy of the eclipse effect mainly attribute to the difference of the background neutral gas density. 4. I carried out a statistical study on the latitudinal dependence of the ionospheric response to solar eclipses and modeled this latitudinal dependence by the ionospheric model. Both the observations and simulations show that the foF2 and TEC responses have the same latitudinal dependence: the eclipse effects on foF2 and TEC are smaller at low latitudes than at middle latitudes; at the middle latitudes (>40°), the eclipse effect decreases with increasing latitude. In addition, the simulated results show the change in electron temperature at the heights of above 300 km of low latitudes is much smaller than that at the same heights of middle latitudes. This is due to the smaller decrease in photoelectron production rate at its conjugate low heights. 5. By analyzing the observed data during the October 3, 2005 solar eclipse, I find some significant disturbances in the conjugate region of the eclipse region, including a decrease in Te, an increase in foF2 and TEC, and an uprising in hmF2. I also simulated the ionosphere behavior during this eclipse using a mid-low latitude ionospheric model. The simulations reproduce the measured ionospheric disturbances mentioned above in the conjugated hemisphere. The simulations show that the great loss of arriving photoelectron heat from the eclipse region is the principal driving source for the disturbances in the conjugate hemisphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two problems are studied in this thesis, the relationship of the magneto-spheric - ionospheric current systems during storms, and the effects of the main field to the space environment. The thesis includes three parts. 1. Magnetic disturbances caused by magnetospheric - ionospheric current systems Transient variations of the geomagnetic field at middle-low latitudes are mainly caused by the ionospheric dynamo current (IDC), the symmetric ring current (SRC), the partial ring current-region II field-aligned current-ionospheric current system (PRFI), and the region I field-aligned current-ionospheric current system (FACI). The storm on May 1 ~ 6, 1998 is analyzed. Firstly, the S_q-field caused by IDC current is removed by using the modified Hibberd's method in which the effect of SRC is considered. The neglect of SRC-field can give as much as 40% error in S_q-field evaluation. Secondly, the disturbance fields at the middle and low latitudes are separated according to their origins. As a result, the disturbance caused by FACI-current is an important part of the asymmetrical depression of H-component in middle and low latitudes during storms. The results show that the relative intensity of the Sq-field increases in the main phase of the storm and decreases in the recovery phase. The latitudinal gradient of the Sq-field is positive during the whole storm. The storm of May 1 ~ 6, 1998 contains two events. In the first event on May 2, the SRC-field is similar to Dst index. But in the second event on May 4 ~ 5, the SRC-field delays to Dst index, and the SRC-field depresses while the PRFI- and FACI-fields recovery. 2. Analysis of S_q~p variation in CGM coordinates In order to study the conjugation of geomagnetic variations between northern and southern hemispheres, we use the corrected geomagnetic coordinates (CGM) instead of the geomagnetic coordinates (GM) to analyze the S_q~P equivalent current system. The CGM coordinates are built up by International Geomagnetic Reference Field (IGRF) model. The S_q~p variations and equivalent current systems in the northern and southern polar regions are more symmetrical in CGM coordinates than in GM co-ordinates. This fact implies that the current distributions in polar regions are governed by the configuration of the geomagnetic field lines. As the elaborate structure of S_q~p current system in quiet time is obtained, we summarize the seasonal variation of the electrojet in quiet time. 3. The magnetospheric configuration of non-parallel-dipole model The magnetospheric configurations are calculated for two possible geomag-netic field models during the geomagnetic field reversals. These models are the dipole field with the axis to the sun and the quadrupole field model. We use the finite element method to solve the magnetic equation, and use the surface evolution method to solve the equilibrium equation. The results show that the main field greatly affects the space environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross well seismic technique is a new type of geophysical method, which observes the seismic wave of the geologic body by placing both the source and receiver in the wells. By applying this method, it averted the absorption to high-frequency component of seismic signal caused by low weathering layers, thus, an extremely high-resolution seismic signal can be acquired. And extremely fine image of cross well formations, structure, and reservoir can be achieved as well. An integrated research is conducted to the high-frequency S-wave and P-wave data and some other data to determine the small faults, small structure and resolving the issues concerning the thin bed and reservoir's connectivity, fluid distribution, steam injection and fracture. This method connects the high-resolution surface seismic, logging and reservoir engineering. In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a research is conducted on cross well seismic technology in general and its important issues in cross well seismic technology in particular. A technological series of integrated field acquisition, data processing and interpretation and its integrated application research were developed and this new method can be applied to oilfield development and optimizing oilfield development scheme. The contents and results in this paper are as listed follows: An overview was given on the status quo and development of the cross well seismic method and problems concerning the cross well seismic technology and the difference in cross well seismic technology between China and international levels; And an analysis and comparison are given on foreign-made field data acquisition systems for cross-well seismic and pointed out the pros and cons of the field systems manufactured by these two foreign companies and this is highly valuable to import foreign-made cross well seismic field acquisition system for China. After analyses were conducted to the geometry design and field data for the cross well seismic method, a common wave field time-depth curve equation was derived and three types of pipe waves were discovered for the first time. Then, a research was conducted on the mechanism for its generation. Based on the wave field separation theory for cross well seismic method, we believe that different type of wave fields in different gather domain has different attributes characteristics, multiple methods (for instance, F-K filtering and median filtering) were applied in eliminating and suppressing the cross well disturbances and successfully separated the upgoing and downgoing waves and a satisfactory result has been achieved. In the area of wave field numerical simulation for cross well seismic method, a analysis was conducted on conventional ray tracing method and its shortcomings and proposed a minimum travel time ray tracing method based on Feraiat theory in this paper. This method is not only has high-speed calculation, but also with no rays enter into "dead end" or "blinded spot" after numerous iterations and it is become more adequate for complex velocity model. This is first time that the travel time interpolation has been brought into consideration, a dynamic ray tracing method with shortest possible path has been developed for the first arrivals of any complex mediums, such as transmission, diffraction and refraction, etc and eliminated the limitation for only traveling from one node to another node and increases the calculation accuracy for minimum travel time and ray tracing path and derives solution and corresponding edge conditions to the fourth-order differential sonic wave equation. The final step is to calculate cross well seismic synthetics for given source and receivers from multiple geological bodies. Thus, real cross-well seismic wave field can be recognized through scientific means and provides important foundation to guide the cross well seismic field geometry designing. A velocity tomographic inversion of the least square conjugated gradient method was developed for cross well seismic velocity tomopgraphic inversion and a modification has been made to object function of the old high frequency ray tracing method and put forward a thin bed oriented model for finite frequency velocity tomographic inversion method. As the theory model and results demonstrates that the method is simple and effective and is very important in seismic ray tomographic imaging for the complex geological body. Based on the characteristics of the cross well seismic algorithm, a processing flow for cross well seismic data processing has been built and optimized and applied to the production, a good section of velocity tomopgrphic inversion and cross well reflection imaging has been acquired. The cross well seismic data is acquired from the depth domain and how to interprets the depth domain data and retrieve the attributes is a brand new subject. After research was conducted on synthetics and trace integration from depth domain for the cross well seismic data interpretation, first of all, a research was conducted on logging constraint wave impedance of cross well seismic data and initially set up cross well seismic data interpretation flows. After it applied and interpreted to the cross well seismic data and a good geological results has been achieved in velocity tomographic inversion and reflection depth imaging and a lot of difficult problems for oilfield development has been resolved. This powerful, new method is good for oilfield development scheme optimization and increasing EOR. Based on conventional reservoir geological model building from logging data, a new method is also discussed on constraining the accuracy of reservoir geological model by applying the high resolution cross well seismic data and it has applied to Fan 124 project and a good results has been achieved which it presents a bight future for the cross well seismic technology.