182 resultados para Dislocations in crystals


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, based on the consideration of covalent behavior of adjacent ions in crystals, a calculation formula of lattice energy was proposed. In which, the concept of ionic effective valence and the empirical formula covalent energy were introduced,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atomistic simulations are used to investigate the mechanical behavior of metal nanowire with fivefold twinned structure. The twinned nanowires were reported in recent experiments [B. Wu et al., Nano Lett. 6, 468 (2006)]. In the present paper, we find that the yield strength of the fivefold twinned Cu nanowire is 1.3 GPa higher than that of the face-centered-cubic (fcc) < 110 > single crystalline Cu nanowire without fivefold twinned structure, and the microstructure-hardened mechanism is primarily due to the twinned boundaries which act as the barriers for the dislocation emission and propagation. However, we also find that the fivefold twinned Cu nanowire has lower ductility than that of fcc < 110 > single crystalline Cu nanowire without the twinned structure, and this is mainly attributed to the scarcity and low mobility of dislocations. In addition, in our simulations the effect of preexisting stacking faults and dislocations on strength of the fivefold twinned nanowires is investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanostructured ZnO materials are of great significance for their potential applications in photoelectronic devices, light-emitting displays, catalysis and gas sensors. In this paper, we report a new method to produce large area periodical bowl-like micropatterns of single crystal ZnO through aqueous-phase epitaxial growth on a ZnO single crystal substrate. A self-assembled monolayer of polystyrene microspheres was used as a template to confine the epitaxial growth of single crystal ZnO from the substrate, while the growth morphology was well controlled by citrate anions. Moreover, it was found that the self-assembled monolayer of colloidal spheres plays an important role in reduction of the defect density in the epitaxial ZnO layer. Though the mechanism is still open for further investigation, the present result indicates a new route to suppress the dislocations in the fabrication of single crystal ZnO film. A predicable application of this new method is for the fabrication of two-dimensional photonic crystal structures on light emitting diode surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spectroscopic properties of Ce-doped yttrium orthoaluminate (Ce:YAlO3 or Ce:YAP) crystals grown by temperature gradient technique (TGT) were investigated, and the effects of the growth conditions on the properties were analyzed.. Methods of optical absorption (OA), photoluminescence (PL), photoluminescence decay (PLD), X-ray excited luminescence (XL) and cathodeluminescence (CL) were used in these investigations. The results showed that the absorption band peak at 202, 394 and 532 nm originated from F and F+ color center induced by the weak reducing growth atmosphere, green emission band near 500 ran derived from Ce3+ -Ce3+ pairs and band at 650 similar to 850 run from some unintentional impurity in crystals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Triple-axis x-ray diffraction (TXRD) and photoluminescence (PL) spectra are used to assess the influence of the ratio of TMIn flow to group III flow on structural defects, such as dislocations and interface roughness, and optical properties of multiple quantum wells(MQWs). In this paper the mean densities of edge and screw dislocations in InGaN/GaN MQWs are obtained by W scan of every satellite peak of (0002) symmetric and (1012) asymmetric diffractions. At the same time, the interface roughness is measured by the radio of the full width at half maximum of satellite peaks to the peak orders. The experimental results showed that the density of dislocation, especially of edge dislocation, and interface roughness increase with the increase of the ratio, which leads to the decrease of PL properties. It also can be concluded that the edge dislocation acts as nonradiative recombination centers in InGaN/GaN MQWs. Also noticed is that the variation of the ratio has more influence on edge dislocation than on screw dislocation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InAs quantum dots (QDs) were grown On Ultra-thin In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (00 1) substrates. Combining reflection high-energy electron diffraction, atomic force microscopy and transmission electron microscopy, we analyzed the stress field of dislocations in the strained layer/substrate interface. Specially, we revealed the relative position of QDs and dislocations. We found that the difference of the stress field around dislocations is prominent when the strained layer is ultra-thin and the stress field will directly affect the following growth. On the strained layer surface, In0.15Ga0.85As ridges will form at the inclined upside of dislocations. Then, InAs QDs will prefer nucleating on the ridges, there is relatively small stress between InAs and In0.15Ga0.85As. By selecting ultra-thin In0.15Ga0.85As layer (50 nm) and controlling the QD layer at just form QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the effect of the post-growth rapid thermal annealing on optical and electrical properties of InAs/InAlAs/InP quantum wires with various InAs deposited thickness. Quite different annealing behaviors in photoluminescence and dark resistance are observed, which can be attributed to dislocations in samples. After annealing at 800 degrees C, quantum wires still exist in the sample with two monolayer InAs deposited thickness, but the temperature-dependent PL properties are changed greatly due to the intermixing of In/Al atoms. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the effect of the thickness and layer number of the low-temperature A1N interlayer (LT-A1N IL) on the stress relaxation and the crystal quality of GaN epilayers grown on Si (111) substrate by metalorganic chemical vapor deposition. It is found that the stress decreases with the increase of the LT-AIN IL thickness, but the crystal quality of the GaN epilayer goes worse quickly when the LT-AIN IL thickness is larger than 16 nm. This is because the increase of the LT-AIN IL thickness will increase the coalescence thickness of its upper GaN layer, which sensitively affects the crystal quality of the epilayer. Using multiple LT-AIN ILs is an effective method not only to reduce the stress, but also to improve the crystal quality of the GaN epilayer. With the increase of the interlayer number, the probability that dislocations are blocked increases and the probability that dislocations are produced at interfaces decreases. Thus, dislocations in the most upper part of GaN are reduced, resulting in the improvement of the crystal quality. Finally, it is suggested that when the total thickness of the epilayer is fixed, both the thickness and the number of the LT-AIN IL should be carefully designed to reduce the stress and improve the crystal quality of the epilayer simultaneously. (c) 2004 Elsevier B.V.. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of InAs deposition thickness on the structural and optical properties of InAs/InAlAs quantum wires (QWR) superlattices (SLS) was studied. The transmission electron microscopy (TEM) results show that with increasing the InAs deposited thickness, the size uniformity and spatial ordering of InAs QWR SLS was greatly improved, but threading dislocations initiated from InAs nanowires for the sample with 6 monolayers (MLs) InAs deposition. In addition, the zig-zag features along the extending direction and lateral interlink of InAs nanowires were also observed. The InAs nanowires, especially for the first period, were laterally compact. These structural features may result in easy tunneling and coupling of charge carriers between InAs nanowires and will hamper their device applications to some extent. Some suggestions are put forward for further improving the uniformity of the stacked InAs QWRs, and for suppressing the formation of the threading dislocations in InAs QWR SLS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The strain evolution of a GaN layer grown on a high- temperature AlN interlayer with varying AlN thickness by metalorganic chemical vapour deposition is investigated. In the growth process, the growth strain changes from compression to tension in the top GaN layer, and the thickness at which the compressive- to- tensile strain transition takes place is strongly influenced by the thickness of the AlN interlayer. It is confirmed from the x- ray diffraction results that the AlN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer. The strain transition process during the growth of the top GaN layer can be explained by the threading dislocation inclination in the top GaN layer. Adjusting the AlN interlayer thickness could change the density of the threading dislocations in the top GaN layer and then change the stress evolution during the top GaN layer's growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both cracked and crack-free GaN/Al0.55Ga0.45N multiple quantum wells (MQWs) grown on GaN template by metalorganic chemical vapor deposition have been studied by triple-axis X-ray diffraction, grazing-incidence X-ray reflectivity, atomic force microscope, photoluminescence spectroscopy and low-energy positron annihilation spectroscopy. The experimental results show that cracks generation not only deteriorates the surface morphology, but also leads to a period dispersion and roughens the interfaces of MQWs. The mean density of dislocations in MQWs, determined from the average full-width at half-maximum of to-scan of each satellite peak, has been significantly enhanced by the cracks generation. Furthermore, the measurement of annihilation-line Doppler broadening reveals a higher concentration of negatively charged vacancies in the cracked MQWs. The combination of these vacancies and the high density of edge dislocations are assumed to contribute to the highly enhanced yellow luminescence in the cracked sample. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a low-temperature (LT) growth technique. Even with Ge fraction x upto 90%, the total thickness of fully relaxed GexSi1-x buffers can he reduced to 1.7 mu m with dislocation density lower than 5 x 10(6) cm(-2). The surface roughness is no more than 6 nm. The strain relaxation is quite inhomogeneous From the beginning. Stacking faults generate and form the mismatch dislocations in the interface of GeSi/LT-Si. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microstructure of GaN buffer layer grown on (111)MgAl2O4 substrate by metalorganic vapor phase epitaxy (MOVPE) was studied by transmission electron microscopy (TEM). It has been observed that the early deposition of GaN buffer layer on the substrate at a relatively low temperature formed a continual island-sublayer (5 nm thick) with hexagonal crystallographic structure, and the subsequent GaN buffer deposition led to crystal columns which are composed of nano-crystal slices with mixed cubic and hexagonal phases. After high-temperature annealing, the crystallinity of nano-crystal slices and island-sublayer in the buffer layer have been improved. The formation of threading dislocations in the GaN him is attributed not only to the lattice mismatch of GaN/MgAl2O4 interface, but also to the stacking mismatches at the crystal column boundaries. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of growth interruption on the InAs deposition and its subsequent growth as self-assembled island structures, in particular the material transport process of the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurements. InAs material in structures with only coherent islands transfers from the wetting layer to the formed islands and the growth interruption causes a red shift of PL peak energy. On the other hand, the PL peak shifts to higher energy in structures containing simultaneously coherent and noncoherent islands with dislocations. In this case, the noncoherent islands capture InAs material from the surrounding wetting layer as well as coherent islands, which casues a reduction in the size of these islands. The variations in the PL intensity and line width are also discussed. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InAs layers were grown on GaAs by molecular beam epitaxy (MBE) at substrate temperature 450 and 480 degrees C, and the surface morphology was studied with scanning electron microscopy (SEM). We have observed a high density of hexagonal deep pits for samples grown at 450 degrees C, however, the samples grown at 480 degrees C have smooth surface. The difference of morphology can be explained by different migration of cations which is temperature dependent. Cross-sectional transmission electron microscopy (XTEM) studies showed that the growth temperature also affect the distributions of threading dislocations in InAs layers because the motion of dislocations is kinetically limited at lower temperature. (C) 1998 Elsevier Science B.V. All rights reserved.