100 resultados para Debris flows
Resumo:
A novel possibility to determine the temperature, density and velocity simultaneously in gas flows by measuring the average value, amplitude of modulation and phase shift of the photoluminescence excited by a temporally or spatially modulated light source is investigated. Time-dependent equations taking the flow, diffusion, excitation and decay into account are solved analytically. Different experimental arrangements are proposed. Measurements of velocity with two components, and temporal and spatial resolutions in the measurements are investigated. Numerical examples are given for N z with biacetyl as the seed gas. Practical considerations for the measurements and the relation between this method and some existing methods of lifetime measurement are discussed.
Resumo:
The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two-dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically together with the momentum and energy equations in the laminar boundary layer with variable density effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the wall are influenced by the density variation effect for external flow past bodies. The general numerical procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples of thermophoretic deposition of particles in flows past a cold cylinder and a sphere.
Resumo:
The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.
Resumo:
In this paper we explore techniques to identify sources of electric current systems and their channels of flow in solar active regions. Measured photospheric vector magnetic fields (VMF) together with high-resolution white-light and H filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. Simple mathematical constructions of fields and currents are also adopted to understand these data. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980. The main results are: (i) In unipolar sunspots the current density may reach values of 103 CGSE, and the Lorentz force on it can accelerate the Evershed flow, (ii) Spots exhibiting significant spiral pattrn in the penumbral filaments are the sources of vertical major currents at the photospheric surface, (iii) Magnetic neutral lines where the transverse field was strongly sheared were channels along which strong current system flows, (iv) The inferred current systems produced oppositely-flowing currents in the area of the delta configuration that was the site of flaring in AR 2372.
Resumo:
A phase relaxation model (PRM) for 2-phase flows is presented in this paper on the basis of three principal assumptions. The basic equations for PRM arc derived from the Boltzmann equations for gas-partlcle mixture, The general characteristics and solving process of the PRM's basic equations are also presented and discussed. Many terms in the PRM's basic equations contain a factor ε= ρgρp/ρg+ρp2 which is an intrinsic small parameter for 2-phase mixture, with ρg and ρp being respectively the densities of gas and particle phases.This makes it possible to simplify the computation of the PRM's basic equations. The model is applied to for example, studying file steady propagation of shock waves in gas-particle mixture. The analysis shows that with an increase of shock wave strength the relaxation process behind a gasdynamics shock front becomes a kind of dynamics relaxation instead of the standard exponential relaxation process. A method of determining experimentally the velocity and tem...更多perature relaxation rates (or times) of gas-particle flows is suggested and analyzed.
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
A critical review on the mechanism and models on the bubble-to-slug transition of two-phase gas-liquid flows are presented in the present paper. It is shown that the most possible mechanism controlled the bubble-to-slug transition is the bubble coalescence. Focusing on the bubble-to-slug transition for the low-Re two-phase flow, a simple Monte Carlo method is used to simulate the influence of the initial bubble size on the bubble-to-slug transition. Some secondary factors, such as the liquid viscosity, the surface tension, and the relative slip between the two phases, are ignored in the present study. It is found that the locus of the dimensionless rate of collision is a universal curve. Based on this curve, it is determined that the bubble initial size can affect the phase distribution and flow pattern when its dimensionless value is in the range from 0.03 to 0.4. A simple relationship between the critical void fraction and the initial bubble size is proposed, which agrees very well with the experimental data.
Resumo:
A new mathematical model for the transient flow in the composite low permeability is established. It is solved by FEM with different boundary conditions such as infinite, circular closed and constant pressure boundary conditions. The typical curves for transient wellbore pressure have been presented. It is shown that the pressure and pressure derivative curves with composite start-up pressure gradients have different slopes which are depended on the start-up pressure gradients and the mobility radios in different regions. The boundary effects are the same as the normal reservoirs without start-up pressure gradients. The study provides a new tool to analyze the transient pressure test data in the low permeability reservoir.
Resumo:
This paper presents a measurement of flow patterns and flow velocities of gas-water two-phase flows based on the technique of electrical resistance tomography (ERT) in a 40m horizontal flow loop. A single-plane and dual-plane ERT sensor on conductive ring technique were used to gather sufficient information for the implementation of flow characteristics particularly flow pattern recognition and air cavity velocity measurement. A fast data collection strategy was applied to the dual-plane ERT sensor and an iterative algorithm was used for image reconstruction. Results, in respect to flow patterns and velocity maps, are reported.
Resumo:
The high Reynolds number flow contains a wide range of length and time scales, and the flow
domain can be divided into several sub-domains with different characteristic scales. In some
sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some
sub-domains, the viscosity dissipation scales need to be considered in all directions; in some
sub-domains, the viscosity dissipation scales are unnecessary to be considered at all.
For laminar boundary layer region, the characteristic length scales in the streamwise and normal
directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in
the outer region of the boundary layer are L and U, respectively. In the neighborhood region of
the separated point, the length scale l<
Resumo:
A new numerical model for transient flows of polymer solution in a circular bounded composite formation is presented in this paper. Typical curves of the wellbore transient pressure are yielded by FEM. The effects of non-Newtonian power-law index, mobility and boundary distance have been considered. It is found that for the mobility ratio larger than 1, which is favorable for the polymer flooding, the pressure derivative curve in log-log form rises up without any hollow. On the other hand, if the pressure derivative curve has a hollow and then is raised up, we say that the polymer flooding fails. Finally, the new model has been extended to more complicated boundary case.
Resumo:
A numerical optimisation approach to identify dominant dimensionless variables in porous media flows by sensitivity analysis is proposed. We have validated the approach at first by examining a simple oil reservoir theoretically and numerically as well. A more complex water-flooding reservoir is examined based on sensitivity analysis of oil recovery to the similarity parameters, thus demonstrating the feasibility of the proposed approach to identify dominant similarity parameters for water-oil two-phase flows.
Resumo:
Validated by comparison with DNS, numerical database of turbulent channel flows is yielded by Large Eddy Simulation (LES). Three conventional techniques: uv quadrant 2, VITA and mu-level techniques for detecting turbulent bursts are applied to the identification of turbulent bursts. With a grouping parameter introduced by Bogard & Tiedemann (1986) or Luchik & Tiederman (1987), multiple ejections detected by these techniques which originate from a single burst can be grouped into a single-burst event. The results are compared with experimental results, showing that all techniques yield reasonable average burst period. However, uv quadrant 2 and mu-level are found to be superior to VITA in having large threshold-independent range.
Resumo:
This paper investiges the effect of pipe diameter on flow pattern transition boundary in oil water vertical flows, and proposes a model to determine the maximum inner diameter (D_{infty s}) of a pipe in which the slug flow would not occur When pipe inner diameter D>D_{infty s}, only bubble flow exists, while D
Resumo:
In the present talk, the simulation of vortex dominant and turbulent flows are primarily addressed. To cope with complicated circumstances in environmental flows we illustrate the strategy of combining simplified physical model and suitable algorithm by a few examples.