52 resultados para DIAMINES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permeability coefficients of H-2, O-2, and N2 were measured under 10 atm at the temperature from ambient temperature up to 150 degrees C in a series of structurally different aromatic homo- and copolyimides, which were prepared from 4,4'-oxydianiline (ODA) or 4,4'-methylene dianiline (MDA) with various aromatic dianhydrides. The study shows that the molecular structure of the polyimides strongly influences gas permeability and permselectivity. As a result, the permeability coefficients of the polyimide membranes for each gas vary by over two orders of magnitude. In general, among the polyimide membranes studied, the increase in permeability of polymers is accompanied by the decrease in permselectivity, and the MDA-based polyimide membranes have higher permeability than ODA-based ones. Among the polyimides prepared from bridged dianhydrides, the permeability coefficients to H-2, O-2, and N-2 are progressively increased in the order BPDA < BTDA < ODPA similar to TDPA < DSDA ( SiDA < 6FDA, while H-2/N-2 and O-2/N-2 permselectivity coefficients are progressively decreased in the same order. The copolyimide membranes, which were prepared from 3,3',4,4' biphenyltetracarboxylic dianhydride (BPDA), bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride (SiDA), and ODA, have favorable gas separation properties and are useful for H-2/N-2 separation applications. (C) 1996 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis is described of some aromatic polyamides based on unsubstituted, and methyl-, carboxy-, and sulfo-substituted diamines by interfacial polycondensation. Some of them are crosslinked and some of them contain heterocyclic aromatic rings. Their chemical structures are characterized by IR and C-13 solid-state NMR spectra and the spectra are interpreted. (C) 1996 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas permeability coefficients of a series of aromatic polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and various aromatic diamines, to H-2, CO2, O-2, N-2 and CH4 have been measured under 7 atm pressure and over the temperature range 30-150 degrees C. A significant change in permeability and permselectivity, which resulted from a systematic variation in chemical structure of the polyetherimides, was found. Generally, increases in permeability of the polyetherimides are accompanied by decreases in permselectivity. The order of decrease of the permeability coefficients is as follows: HQDPA-IPDA > HQDPA-DDS > HQDPA-MDA > HQDPA-ODA > HQDPA-DABP > HQDPA-BZD. However, HQDPA-DMoBZD and HQDPA-DMoMDA, with bulky methoxy side-groups on the aromatic rings of the diamine residue, display both high permeability coefficients and high permselectivity. The favourable gas separation property, excellent thermal and chemical stability, and high mechanical strength make HQDPA-DMoBZD and HQDPA-DMoMDA promising candidates for membrane-based gas separation applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas permeability coefficients of a series of aromatic polyetherimides prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and four (methylene dianiline)s with a methyl side group to H-2, CO2, O-2, N-2, and CH4 were measured under 7 atm and within a temperature range from 30 to 150 degrees C. The gas permeabilities and permselectivities of these polymers were compared with those of the HQDPA-based polyetherimides from methylene dianiline (MDA) and isopropylidene dianiline (IPDA). The number and position of the methyl side groups on the benzene rings of the diamine residues strongly affect the gas permeabilities and permselectivities of the HQDPA-based polyetherimides. The gas permeability of the polyetherimide progressively increases with an increase in the number of the methyl side groups. Both the gas permeability and permselectivity of the polyetherimides with methyl side groups are higher than those of HQDPA-MDA. The polyetherimide prepared from 3,3'-dimethyl 4,4'-methylene dianiline (DMMDA1) possesses both higher permeability and permselectivity than the polyetherimides prepared from 2,2'-dimethyl 4,4'-methylene dianiline (DMMDA2). However, two of the polyetherimides prepared 2,2',3,3'-tetramethyl 4,4'-methylene dianiline (TMMDA1) or 2,2', 5,5'-tetramethyl 4,4'-methylene dianiline (TMMDA2) possess almost the same gas permeability and permselectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New poly(azomethine sulfones) with linear structures containing sulfonyl bis(4-phenoxyphenylene) and oxo bis(benzylideneaniline) or methylene bis(benzylideneaniline) units were prepared in the conventional literature manner by condensing the dialdehyde sulfone monomer (V) with diamines such as 4,4'-oxydianiline (IIIa) and 4,4'-methylenedianiline (IIIb), or by condensing an azomethine biphenol (IX) with 4,4'-sulfonyldichlorobenzene (II). Three model compounds which reproduced the above structures were also synthesized. The resulting polymers were confirmed by IR, H-1-NMP, and elemental analysis, and were characterized by inherent viscosities, thermogravimetric analysis (TGA), and x-ray diffraction. The thermotropic liquid crystalline (TLC) behavior was studied using polarization light microscopy (PLM), thermooptical analysis (TOA), and DSC. A nematic texture was observed only for 4,4'-oxydianiline-units-based polymers. The reaction of polymer VIIIb containing -CH2- links between the mesogens with the model compound IX led to polymer X which exhibited TLC behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of polyimides with different structures have been synthesized and studied by dynamic mechanical analysis. The results obtained indicate that the beta relaxation in polyimides is related to the rotation of rigid segment(s) of p-phenylene and imide groups around 'hinges' such as -O-, -CH2- and so on in diamines. It is noticed that two kinds of polyimides both with [GRAPHICS] imide groups have verv weak beta relaxation below the glass transition temperature. This phenomenon is due to the fact that the configuration of chains with the above imide groups hinders the rotation of the rigid segments in the chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of miscible phenolphthalein poly(ether ether ketone)/phenoxy (PEK-C/phenoxy) blends have been measured by dynamic mechanical analysis and tensile testing. The blends were found to have single glass transition temperatures (T(g)) that vary continuously with composition. The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for tensile strength. The tensile strengths of the 90/10 and 75/25 PEK-C/phenoxy blends are higher than those of both the pure components. Embrittlement, or transition from the brittle to the ductile mode of failure, occurs in the composition range of 50-25 wt% PEK-C. These observations suggest that mixing on the segmental level has occurred and that there is enough interaction between the components to decrease its internal mobility significantly. PEK-C was also found to be miscible with the epoxy monomer, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) within the whole composition range. Miscibility between PEK-C and DGEBA could be considered to be due mainly to entropy. However, PEK-C was judged to be immiscible with the diaminodiphenylmethane-curved epoxy resin (DDM-cured ER). It was observed that the PEK-C/ER blends have two T(g), which remain invariant with composition and are almost the same as those of the pure components, respectively. Scanning electron microscopy showed that the PEK-C/ER blends have a two-phase structure. The different miscibility with PEK-C between DGEBA and the DDM-cured ER is considered to be due to the dramatic change in the chemical and physical nature of ER after curing.