94 resultados para DENDRITIC BRANCHING FEATURES
Resumo:
The generalized liquid drop model (GLDM) is extended to the region around deformed shell closure (270)Hs by taking into account the excitation energy EI+ of the residual daughter nucleus and the centrifugal potential energy V-cen(r). The branching ratios of alpha decays from the ground state of a parent nucleus to the ground state 0(+) of its deformed daughter nucleus and to the first excited state 2(+) are calculated in the framework of the GLDM. The results support the proposal that a measurement of alpha spectroscopy is a feasible method to extract information on nuclear deformation of superheavy nuclei around the deformed nucleus (270)Hs.
Resumo:
An experiment of a S-29 beam bombarding a Au-197 target at an energy of 49.2 MeV/u has been performed to study the two-proton correlated emission from S-29 excited states. Complete-kinematics measurements were carried out in the experiment. The relative momentum, opening angle, and relative energy of two protons, as well as the invariant mass of the final system, were deduced by relativistic-kinematics reconstruction. The Si-27-p-p coincident events were picked out under strict conditions and the phenomenon of p-p correlations was observed among these events. The mechanisms of two-proton emission were analyzed in a simple schematic model, in which the extreme decay modes like He-2 cluster emission, three-body phase-space decay, and two-body sequential emission were taken into account. Associated with the Monte Carlo simulations, the present results show that two protons emitted from the excited states between 9.6 MeV and 10.4 MeV exhibit the features of He-2 cluster decay with a branching ratio of 29(-11)(+10)%.
Resumo:
In this work, we discuss the contribution of the mesonic loops to the decay rates of chi(c1) -> phi phi, omega omega, which are suppressed by the helicity selection rules and chi(c1) -> phi omega, which is a double- Okubo- ZweigIizuka forbidden process. We find that the mesonic loop effects naturally explain the clear signals of chi(c1) -> phi phi, omega omega decay modes observed by the BES Collaboration. Moreover, we investigate the effects of the omega - phi mixing, which may result in the order of magnitude of the branching ratio BR(chi(c1) -> omega phi) being 10(-7). Thus, we are waiting for the accurate measurements of the BR(chi(c1) -> omega omega), BR(chi(c1) -> phi phi) and BR(chi(c1) -> omega phi) which may be very helpful for testing the long- distant contribution and the omega - phi mixing in chi(c1) -> phi phi, omega omega, omega phi decays.
Resumo:
A new equivalent map projection called the parallels plane projection is proposed in this paper. The transverse axis of the parallels plane projection is the expansion of the equator and its vertical axis equals half the length of the central meridian. On the parallels plane projection, meridians are projected as sine curves and parallels are a series of straight, parallel lines. No distortion of length occurs along the central meridian or on any parallels of this projection. Angular distortion and the proportion of length along meridians (except the central meridian) introduced by the projection transformation increase with increasing longitude and latitude. A potential application of the parallels plane projection is that it can provide an efficient projection transformation for global discrete grid systems.
Resumo:
Inspired by human visual cognition mechanism, this paper first presents a scene classification method based on an improved standard model feature. Compared with state-of-the-art efforts in scene classification, the newly proposed method is more robust, more selective, and of lower complexity. These advantages are demonstrated by two sets of experiments on both our own database and standard public ones. Furthermore, occlusion and disorder problems in scene classification in video surveillance are also first studied in this paper.
Resumo:
Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e. g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.