54 resultados para Crystal Composition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady and axisymmetric crystal growth process of floating zone model was studied numerically to concern with the influence of convection and phase change on effective segregation. An iteration method of numerical simulation considering both thermocapillary and buoyancy effects for GaAs crystal growth gave the effective segregation coefficient, which was compared with the space experiment of GaAs on board the Chinese recoverable satellite. The calculated segregation coefficient of a two-dimensional model was found to be smaller than the one suggested by space experiment with the simplified assumption of an one-dimensional model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of low gravity level on crystal growth in the floating zone, which involves thermocapillary convection, phase change convection, thermal and solutal diffusion, is investigated numerically by a finite element method for the silicon crystal growth process. The velocity, temperature, concentration fields and phase change interfaces depending on heating temperature and growth rates are analyzed. The influence of low gravity level on the concentration is studied especially. The results show that the non-uniformities of concentration are about 10(-3) for growth rate nu(p) = 5.12 x 10(-8) m/s, 10(-2) for nu(p) = 5.12 x 10(-7) m/s and relatively larger for larger growth rate in the gravity level g = 0-9.8 m/s2. The thermocapillary effect is strong in comparison with the Bridgman system, and the level of low gravity is relatively insensitive for lower growth rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new thermoplastic-photoconductor laser holographic recording system has been used for real-time and in situ observation of alpha-LiIO3 crystal growth. The influence of crystallization-driven convection on the concentration stratification in solution has been studied under gravity field. It is found that the stratification is closely related to the seed orientation of alpha-LiIO3 crystal. When the optical axis of crystal seed C is parallel to the gravity vector g, the velocity of the concentration stratification is two times larger than that in the case of C perpendicular-to g. It needs 40 h for the crystalline system of alpha-LiIO3 to reach stable concentration distribution (expressed as tau) at 47.6-degrees-C. The time tau is not sensitive to the seed orientation. Our results provide valuable data for designing the crystal growth experiments ia space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floating zone crystal growth in microgravity environment is investigated numerically by a finite element method for semiconductor growth processing, which involves thermocapillary convection, phase change convection, thermal diffusion and solutal diffusion. The configurations of phase change interfaces and distributions of velocity, temperature and concentration fields are analyzed for typical conditions of pulling rates and segregation coefficients. The influence of phase change convection on the distribution of concentration is studied in detail. The results show that the thermocapillary convection plays an important role in mixing up the melt with dopant. The deformations of phase change interfaces by thermal convection-diffusion and pulling rods make larger variation of concentration field in comparison with the case of plane interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs single crystals have been grown under high gravity conditions, up to 9g0, by a recrystallization method with decreasing temperature. The impurity striations in GaAs grown under high gravity become weak and indistinct with smaller striation spacings. The dislocation density of surcharge-grown GaAs increases with increase of centrifugal force. The cathodoluminescence results also show worse perfection in the GaAs grown at high gravity than at normal earth gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method for determining slip shear rate under prescribed stress rate or prescribed strain rate has been presented on the basis of the incremental theory of crystal plasticity. The problem has been reduced to a quadric convex programming.In order to analyse the plastic response of crystals subjected to external load, two new extremum principles are proposed. They are equivalent to the boundary-value problem of crystal plasticity. By the new extremum principles, the slip shear rates are independent function which can be obtained from the variational equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general three-dimensional model is developed for simulation of the growth process of silicon single crystals by Czochralski technique. The numerical scheme is based on the curvilinear non-orthogonal finite volume discretization. Numerical solutions show that the flow and temperature fields in the melt are asymmetric and unsteady for 8’’ silicon growth. The effects of rotation of crystal on the flow structure are studied. The rotation of crystal forms the Ekman layer in which the temperature gradient along solid/melt surface is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.