61 resultados para Critical occupancy
Resumo:
A critical Biot number, which determines both the sensitivity of spherical ceramics to quenching and the durations of the temperature-wave propagation and the thermal stresses in the ceramics subjected to thermal shock, is theoretically obtained. The results prove that once the Biot number of a ceramic sphere is greater than the critical number, its thermal shock failure will be such a rapid process that the failure only occurs in the initial regime of heat conduction, whereas the thermal shock failure of the ceramic sphere is uncertain in the course of heat conduction. The presented results provide a guide to the selection of the ceramics applied in the thermostructural engineering with thermal shock.
Resumo:
Using a phenomenological asymmetric nuclear equation of state, we obtained pressure-density isotherms of the finite nucleus Sn-112 simulated in r-space and in p-space and constructed the nuclear fragments by using the coalescence model. After correlatively analysing the fragments, the signal of critical behavior has been found and critical exponents were also extracted.
Resumo:
We discuss experimental evidence for a nuclear phase transition driven by the different concentrations of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in He-4-He-3 liquid mixtures. We present experimental results that reveal the N/A (or Z/A) dependence of the phase transition and discuss possible implications of these observations in terms of the Landau free energy description of critical phenomena.
Resumo:
The experimental results reveal the isospin dependence of the nuclear phase transition in terms of the Landau Free Energy description of critical phenomena. Near the critical point, different ratios of the neutron to proton concentrations lead to different critical points for the phase transition which is analogous to the phase transitions in He-4-He-3 liquid mixtures. The antisymmetrized molecular dynamics (AMD) and GEMINI models calculations were also performed and the results will be discussed as well.
Resumo:
We report that the brittle-ductile transition of polymers induced by temperature exhibits critical behavior. When t close to 0, the critical surface to surface interparticle distance (IDc) follows the scaling law: IDc proportional to t(-v) where t = 1 - T/T-BD(m) (T and T-BD(m) are the test temperature and brittle-ductile transition temperature of matrix polymer, respectively) and v = 2/D. It is clear that the scaling exponent v only depends on dimension (D). For 2, 3, and 4 dimension, v = 1, 2/3, and 1/2 respectively. The result indicates that the ID, follows the same scaling law as that of the correlation length (xi), when t approach to zero.
Resumo:
The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.
Resumo:
Poly(ethylene glycol) (PEG) networks were synthesized by gamma-irradiation. The crystalline behavior of PEG was investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). It was shown that the crystallinity of PEG is dramatically lower in the cross-linked, networks than in pure PEG. When the molecular weight of PEG in the networks decreased to 1000, it could not crystallize at all. Moreover, we also found that the melting temperature of PEG is greatly affected by the presence of a cross-linked network.
Resumo:
The crystallization behavior of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) at elevated temperatures (e.g., from 125 to 128 degrees C), was studied using transmission electron microscopy and electron diffraction. The results show that epitaxial crystallization of HDPE on the highly oriented iPP substrates occurs only in a thin layer which is in direct contact with the iPP substrate, when the HDPE is crystallized from the melt on the oriented iPP substrates at 125 degrees C. The critical layer thickness of the epitaxially crystallized HDPE is not more than 30 nm when the HDPE is isothermally crystallized on the oriented iPP substrates at 125 degrees C. When the crystallization temperature is above 125 degrees C, the HDPE crystallizes in the form of crystalline aggregates and a few individual crystalline lamellae. But both the crystalline aggregates and the individual crystalline lamellae have no epitaxial orientation relationship with the iPP substrate. This means that there exists a critical crystallization temperature for the occurrence of epitaxial crystallization of HDPE on the melt-drawn oriented iPP substrates (i.e., 125 degrees C). (C) 1997 John Wiley & Sons, Inc.
Resumo:
The contact angles theta of polar liquids on PP-g-AM copolymer (AM content 0.19, 0.26, and 0.37 wt%) were measured. The critical surface tension gamma(c) of PP-g-AM films were evaluated by the Zisman plot (cos theta versus gamma(L)), the Young-Dupre-Good-Girifalco plot (1 + cos theta) versus 1/gamma(L)(0.5), and the log(1 + cos theta) versus log gamma(L) plot. The gamma(L) values estimated by the plot log(1 + cos theta) versus log gamma(L) were smaller than those obtained by the other plots.
Resumo:
The melting points(T-m), crystalline temperature(T-c) and crystallinity(chi(c)) of propylene/alpha-olefin (pentene-l, octene-1 and decene-1) copolymers have been investigated, The results show that the T-m, T-c and chi(c) of the copolymers are lower than those of propylene homopolymer, indicating that lower alpha-olefin incorporation in copolymer has strongly hampered the crystallization of propylene, From critical crystalline sequence length of several propylene/alpha-olefin copolymers, it can be seen that a long chain alpha-olefin has much stronger effect on crystallization of PP than a short alpha-olefin does.
Resumo:
The dynamics of phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by using a time-resolved light-scattering technique. In the later stages of spinodal decomposition, a simple dynamic scaling law was found for the scattering function S(q, t)(S(q, t) approximately I(q, t)): S(q, t)q(m)-3 S approximately (q/q(m)). The scaling function determined experimentally was in good agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X8) for critical concentration, and approximately in agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X6) for non-critical mixtures. The light-scattering invariant shows that the later stages of the spinodal decomposition were undergoing domain ripening.