71 resultados para Cooper pairing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

运用相对论平均场理论结合Wigner-Seitz近似,研究了致密物质中电子气体对56Fe和120Sr结构的影响,对关联的处理采用Bardeen-Cooper-Schrieffer方法.结果表明电子气体对单粒子能级、核子密度分布、核子分布均方根半径、原子核均方根半径等性质都有影响,并且对质子的影响大于对中子的影响.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a procedure to determine the effective nuclear shell-model Hamiltonian in a truncated space from a self-consistent mean-field model, e.g., the Skyrme model. The parameters of pairing plus quadrupole-quadrupole interaction with monopole force are obtained so that the potential energy surface of the Skyrme Hartree-Fock + BCS calculation is reproduced. We test our method for N = Z nuclei in the fpg- and sd-shell regions. It is shown that the calculated energy spectra with these parameters are in a good agreement with experimental data, in which the importance of the monopole interaction is discussed. This method may represent a practical way of defining the Hamiltonian for general shell-model calculations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we perform systematic calculations on low-lying states of 33 nuclei with A=202-212, using the nucleon pair approximation of the shell model. We use a phenomenological shell-model Hamiltonian that includes single-particle energies, monopole and quadrupole pairing interactions, and quadrupole-quadrupole interactions. The building blocks of our model space include one J=4 valence neutron pair, and one J=4,6,8 valence proton pair, in addition to the usual S and D pairs. We calculate binding energies, excitation energies, electric quadrupole and magnetic dipole moments of low-lying states, and E2 transition rates between low-lying states. Our calculated results are reasonably consistent with available experimental data. The calculated quadrupole moments and magnetic moments, many of which have not yet been measured for these nuclei, are useful for future experimental measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the onset of superfluidity in neutron stars, where the model of nuclear matter is realized in a high-density and asymmetry state. In particular, we present the study of the effects of microscopic three-body forces on the proton pairing in the 1S0 channel and neutron pairing in 3PF1 channel for β-stable neutron star matter. It is found that the main effects of three-body forces are to shrink the domain of existence of the 1S0 below the threshold of the direct URCA process and to stretch the density range of the 3PF1 pairing in a broad domain so to cover most part of the neutron-star core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medium polarization effects are studied for S-1(0) pairing in nuclear matter within BHF approach. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The self-energy corrections are consistently included resulting in a strong depletion of the Fermi surface. The self-energy effects always lead to a quenching of the gap, whereas it is almost completely compensated by the anti-screening effect in nuclear matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the isospin dependence of the neutron and proton (PF2)-P-3 superfluidity in isospin-asymmetric nuclear matter within the framework of the Brueckner-Hartree-Fock approach and the BCS theory. We show that the (PF2)-P-3 neutron and proton pairing gaps depend sensitively on isospin asymmetry of asymmetric nuclear matter. As the isospin asymmetry increases, the neutron (PF2)-P-3 superfluidity becomes stronger and the peak value of the neutron (PF2)-P-3 pairing gap increases rapidly. The isospin dependence of the proton (PF2)-P-3 superfluidity is shown to be opposite to the neutron one. The proton (PF2)-P-3 superfluidity becomes weaker at a higher asymmetry and it even vanishes at high enough asymmetries. At high asymmetries, the neutron (PF2)-P-3 superfluidity turns out to be much stronger than the proton one, implying that the neutron (PF2)-P-3 superfluidity is dominated in the highly asymmetric dense interior of neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the (PF2)-P-3 neutron superfluidity in beta-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V-18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the (PF2)-P-3 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neutron (PF2)-P-3 pairing gap in pure neutron matter, neutron (PF2)-P-3 gap and neutron-proton (SD1)-S-3 gap in symmetric nuclear matter have been studied by using the Brueckner-Hartree-Fock(BHF) approach and the BCS theory. We have concentrated on investigating and discussing the three-body force effect on the nucleon superfluidity. The calculated results indicate that the three-body force enhances remaxkably the (PF2)-P-3 superfluidity in neutron matter. It also enhances the (PF2)-P-3 superfluidity in symmetric nuclear matter and its effect increases monotonically as the Fermi-momentum k(F) increases, whereas the three-body force is shown to influence only weakly the neutron-proton (SD1)-S-3 gap in symmetric nuclear matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neutron (PF2)-P-3 pairing gap in pure neutron matter has been studied by using the Brueckner-Hartree-Fock( BHF) approach and the BCS theory. We have concentrated our attention on investigating the three-body force effect on the neutron superfluidity in the (PF2)-P-3 channel. The calculated results indicate that the three-body force enhances remarkably the (PF2)-P-3 superfluidity in neutron matter. When adopting the BHF single-particle spectrum, the three-body force turns out to increase the maximum value of the pairing gap from about 0.22 MeV to about 0.5 MeV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the S-1(0) neutron and proton superfluidity in isospin-asymmetric nuclear matter. We have concentrated on the isospin dependence of the pairing gaps and the effect of a microscopic three-body force. It is found that as the isospin asymmetry goes higher, the neutron S-1(0) superfluid phase shrinks gradually to a smaller density domain, whereas the proton one extends rapidly to a much wider density domain. The three-body force turns out to weaken the neutron S-1(0) superfluidity slightly, but it suppresses strongly the proton S-1(0) superfluidity at high densities in nuclear matter with large isospin asymmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground state properties of the Pb isotopic are studied by using the axially deformed relativistic mean field (RMF) calculation with the parameter set TM1. The pairing correlation is treated by the BCS method and the isospin dependent pairing force is used. The 'blocking' method is used to deal with unpaired nucleons. The theoretical results show that the relativistic mean field theory with non-linear self-interactions of mesons provides a good description of the binding energy and neutron separation energy. The present paper focus on the physical mechanism of the Pb isotope shifts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground-state properties of Hs nuclei are studied in the framework of the relativistic meanfield theory. We find that the more relatively stable isotopes are located on the proton abundant side of the isotopic chain. The last stable nucleus near the proton drip line is probably the (255)Hs nucleus. The alpha-decay half-lives of Hs nuclei are predicted, and together with the evaluation of the spontaneous-fission half-lives it is shown that the nuclei, which are possibly stable against spontaneous fission are (263-274)Hs. This is in coincidence with the larger binding energies per nucleon. If (271-274)Hs can be synthesized and identified, only those nuclei from the upper Z = 118 isotopic chain, which are lighter than the nucleus (294)118, and those nuclei in the corresponding alpha-decay chain lead to Hs nuclei. The most stable unknown Hs nucleus is (268)Hs. The density-dependent delta interaction pairing is used to improve the BCS pairing correction, which results in more reasonable single-particle energy level distributions and nucleon occupation probabilities. It is shown that the properties of nuclei in the superheavy region can be described with this interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isotope yield distributions in the multifragmentation regime were studied with high-quality isotope identification, focusing on the intermediate mass fragments (IMFs) produced in semiviolent collisions. The yields were analyzed within the framework of a modified Fisher model. Using the ratio of the mass-dependent symmetry energy coefficient relative to the temperature, a(sym)/T, extracted in previous work and that of the pairing term, a(p)/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields were corrected for these effects. For a given I = N - Z value, the corrected yields of isotopes relative to the yield of C-12 show a power law distribution Y (N, Z)/Y(C-12) similar to A(-tau) in the mass range 1 <= A <= 30, and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted tau value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple deexcitation model, with which the power law distribution of the primary isotopes is determined to be tau(prim) = 2.4 +/- 0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at, or very near, the critical point.