52 resultados para Consumer multi-stage choice process
Resumo:
The synthesis of NaA zeolite membrane on a porous alpha -Al2O3 support from clear solution and the evaluation of the perfection of the as-synthesized membrane by gas permeation were investigated. When an unseeded support was used, the NaA zeolite began to transform into other types of zeolites before a continuous NaA zeolite membrane formed. When the support was coated with nucleation seeds, not only the formation of NaA zeolite on the support surface was accelerated, but also the transformation of NaA zeolite into other types of zeolites was inhibited. A continuous NaA zeolite membrane can be formed. Perfection evaluation indicated that the NaA zeolite membrane with the synthesis time of 3 h showed the best perfection after a one-stage synthesis. The perfection of NaA zeolite membrane can be improved by employing the multi-stage synthesis method. The NaA zeolite membrane with a synthesis time of 2 h after a two-stage synthesis showed the best gas permeation performance, The permselectivity of H-2/n-C4H10 and O-2/N-2 were 19.1 and 1.8, respectively, higher than those of the corresponding Knudsen diffusion selectivity of 5.39 and 0.94, which showed the molecular sieving effect of NaA zeolite. However, the permeation of n-C4H10 also indicated that the NaA zeolite membrane had certain defects, the diameter of which were larger than the NaA zeolite channels. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
An optical parametric chirped-pulse amplification system is demonstrated to provide 32.9% pump-to-signal conversion efficiency . Special techniques are used to make the signal and pump pulses match with each other in both spectral and temporal domains. The broadband 9.5-mJ pulses are produced at the repetition rate of 1 Hz with the gain of over 1.9 x 10(8). The output energy fluctuation of 7.8% is achieved for the saturated amplification process against the pump fluctuation of 10%.
Resumo:
gamma-Al2O3 films were grown on Si (10 0) substrates using the sources of TMA (AI(CH3)(3)) and O-2 by very low-pressure chemical vapor deposition. The effects of temperature control on the crystalline quality, surface morphology, uniformity and dielectricity were investigated. It has been found that the,gamma-Al2O3 film prepared at a temperature of 1000degreesC has a good crystalline quality, but the surface morphology, uniformity and dielectricity were poor due to the etching reaction between 0, and Si substrate in the initial growth stage. However, under a temperature-varied multi-step process the properties Of gamma-Al2O3 film were improved. The films have a mirror-like surface and the dielectricity was superior to that grown under a single-step process. The uniformity of gamma-Al2O3 films for 2-in epi-wafer was <5%, it is better than that disclosed elsewhere. In order to improve the crystalline quality, the gamma-Al2O3 films were annealed for I h in O-2 atmosphere. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Influence of core property on multi-electron process in the collisions of q = 6-9 and 11 isocharged sequence ions with Ne is investigated in the keV/u region The cross-section ratios of double-, triple-, quadruple- and total multi-electron processes to the single electron capture process as well as the partial ratios of different reaction channels to the relevant multi-electron process are measured by using position-sensitive and time-of-flight techniques The experimental data are compared with the theoretical predictions including the extended classical over-barrier model, the molecular Columbic barrier model and the semi-empirical scaling law Results show a core effect on multi-electron process of isocharge ions colliding with Neon, which is consistent with the results of Helium we obtained previously
Resumo:
We have developed a two-stage growth one-step process for cultivation of Haematococcus using a self-designed system that mimics an open pond in the natural environment. The characteristics of this process are green vegetative cell growth and cysts transformation and pigment accumulation that proceed spontaneously and successively in one open photobioreactor. Four strains of Haematococcus (H. pluvialis 26; H. pluvialis 30; H. pluvialis 34; H. pluvialis WZ) were cultured in this imitation system for a duration of 12 days. The changes in cell density and medium pH were closely monitored, and the astaxanthin content and yield of the four Haematococcus strains were measured at the end of 12 days of cultivation. Two of the strains, H. pluvialis 26 and H. pluvialis WZ, were selected as strains suitable for mass culture, resulting in the astaxanthin yield of 51.06 and 40.25 mg L-1 which are equivalent to 2.79 and 2.50% of their dry biomass respectively. Based on the laboratory work, 6 batch cultures of H. pluvialis WZ were conducted successfully to produce astaxanthin in two 100 m(2) open race-way pond by two-stage growth one-step process. The astaxanthin content ranged from 1.61 to 2.48 g 100 g(-1) dry wt., with average astaxanthin content of 2.10 g 100 g(-1) dry wt. Compared with the one-stage production of astaxanthin based on continuous culture, the superiority of our process is that it can accumulate much more astaxanthin in red cysts. Compared with two-stage production of astaxanthin, the advantage of our process is that it does not need to divide the production process into two parts using two bioreactors. The presented work demonstrates the feasibility for producing astaxanthin from Haematococcus using a two-stage growth one-step process in open pond, culture systems that have been successfully used for Spirulina and Chlorella mass culture. The future of Haematococcus astaxanthin production has been also discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Based on the latest seismic and geological data, tectonic subsidence of three seismic lines in the deepwater area of Pearl River Mouth Basin (PRMB), the northern South China Sea (SCS), is calculated. The result shows that the rifting process of study area is different from the typical passive continental margin basin. Although the seafloor spreading of SCS initiated at 32 Ma, the tectonic subsidence rate does not decrease but increases instead, and then decreases at about 23 Ma, which indicates that the rifting continued after the onset of seafloor spreading until about 23 Ma. The formation thickness exhibits the same phenomenon, that is the syn-rift stage prolonged and the post-rift thermal subsidence delayed. The formation mechanisms are supposed to be three: (1) the lithospheric rigidity of the northern SCS is weak and its ductility is relatively strong, which delayed the strain relaxation resulting from the seafloor spreading; (2) the differential layered independent extension of the lithosphere may be one reason for the delay of post-rift stage; and (3) the southward transition of SCS spreading ridge during 24 to 21 Ma and the corresponding acceleration of seafloor spreading rate then triggered the initiation of large-scale thermal subsidence in the study area at about 23 Ma.
Resumo:
A two-stage process with temperature-shift has been developed to enhance the anthocyanin yield in suspension cultures of strawberry cells. The effect of the temperature-shift interval and the shift-time point was investigated for the optimization of this strategy. In this process, strawberry cells were grown at 30 degrees C (the optimum temperature for cell growth) for a certain period as the first stage, with the temperature shifted to a lower temperature for the second stage. In response to the temperature shift-down, anthocyanin synthesis was stimulated and a higher content could be achieved than that at both boundary temperatures but cell growth was suppressed. When the lower boundary temperature was decreased, cell growth was lowered and a delayed, sustained maximum anthocyanin content was achieved. Anthocyanin synthesis was strongly influenced by the shift-time point but cell growth was not. Consequently, the maximum anthocyanin content of 2.7 mg.g-fresh cell(-1) was obtained on day 9 by a temperature-shift from 30 degrees C, after 3-d culture, to 15 degrees C. The highest anthocyanin yield of 318 mg.L-1 on day 12 was achieved when the temperature was shifted from 30 degrees C, after 5-d culture, to 20 degrees C. For a global optimization of both the yield and productivity, the optimum anthocyanin yield and productivity of 272 mg.L-1 and 30.2 mg.L-1.d(-1) on day 9 were achieved by a two-stage culture with a temperature-shift from 30 degrees C after 3 d to 20 degrees C.