265 resultados para Cong bu


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subband structure and inter-subband transition as a function of gate voltage are determined by solving the Schrodinger and Poisson equations self-consistently in an AlxGa1-xN/GaN heterostructure. Different aluminum mole fraction and thickness of AlxGa1-xN barrier are considered. Calculation results show that energy difference between the first and second subband covers a wide range (from several tens to hundreds milli-electron volt) by applying different gate voltage, which corresponds to the midinfrared and long-wave infrared wavelength scope. Furthermore, such a modulation on the subband transition energy is much more pronounced for the structure with thin barrier. When the applied positive gate voltage is increased, the triangle well formed at the interface turns to be deeper and narrower, which enhances the confinement for electrons. As a result, the overlap between electron wave function at two subbands increases, and thus the optical intersubband transition also enhances its intensity. This tendency is in good agreement with the available data in the literature. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method is demonstrated to be effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks by inserting InAlGaN interlayers during the growth of GaN upon Si (1 1 1) substrate. Compared with GaN film without quaternary interlayer, GaN layer grown on InAlGaN compliant layers shows a five times brighter integrated PL intensity and a (0 0 0 2) High-resolution X-ray diffraction (HRXRD) curve width of 18 arcmin. Its chi(min), derived from Rutherford backscattering spectrometry (RBS), is about 2.0%, which means that the crystalline quality of this layer is very good. Quaternary InAlGaN layers, which are used as buffer layers firstly, can play a compliant role to endure the large mismatch-induced stress and reduce cracks during the growth of GaN epitaxy. The mechanisms leading to crack density reduction are investigated and results show that the phase immiscibility and the weak In-N bond make interlayer to offer tenability in the lattice parameters and release the thermal stress. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the effect of the thickness and layer number of the low-temperature A1N interlayer (LT-A1N IL) on the stress relaxation and the crystal quality of GaN epilayers grown on Si (111) substrate by metalorganic chemical vapor deposition. It is found that the stress decreases with the increase of the LT-AIN IL thickness, but the crystal quality of the GaN epilayer goes worse quickly when the LT-AIN IL thickness is larger than 16 nm. This is because the increase of the LT-AIN IL thickness will increase the coalescence thickness of its upper GaN layer, which sensitively affects the crystal quality of the epilayer. Using multiple LT-AIN ILs is an effective method not only to reduce the stress, but also to improve the crystal quality of the GaN epilayer. With the increase of the interlayer number, the probability that dislocations are blocked increases and the probability that dislocations are produced at interfaces decreases. Thus, dislocations in the most upper part of GaN are reduced, resulting in the improvement of the crystal quality. Finally, it is suggested that when the total thickness of the epilayer is fixed, both the thickness and the number of the LT-AIN IL should be carefully designed to reduce the stress and improve the crystal quality of the epilayer simultaneously. (c) 2004 Elsevier B.V.. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The depth distribution of the strain-related tetragonal distortion e(T) in the GaN epilayer with low-temperature AlN interlayer (LT-AlN IL) on Si(111) substrate is investigated by Rutherford backscattering and channeling. The samples with the LT-AlN IL of 8 and 16 nm thickness are studied, which are also compared with the sample without the LT-AlN IL. For the sample with 16-nm-thick LT-AlN IL, it is found that there exists a step-down of e(T) of about 0.1% in the strain distribution. Meanwhile, the angular scan around the normal GaN <0001> axis shows a tilt difference about 0.01degrees between the two parts of GaN separated by the LT-AlN IL, which means that these two GaN layers are partially decoupled by the AlN interlayer. However, for the sample with 8-nm-thick LT-AlN IL, neither step-down of e(T) nor the decoupling phenomenon is found. The 0.01degrees decoupled angle in the sample with 16-nm-thick LT-AlN IL confirms the relaxation of the LT-AlN IL. Thus the step-down of e(T) should result from the compressive strain compensation brought by the relaxed AlN interlayer. It is concluded that the strain compensation effect will occur only when the thickness of the LT-AlN IL is beyond a critical thickness. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a comprehensive study of the effect of heavy B doping and strain in Si1-xGex strained layers. On the one hand, bandgap narrowing (BGN) will be generated due to the heavy doping, on the other hand, the dopant boron causes shrinkage in the lattice constant of SiGe materials, thus will compensate for part of the strain. Taking the strain compensation of B into account for the first time and uesing the with semi-empirical method, the Jain-Roulston model is modified. And the real BGN distributed between the conduction and valence bands is calculated, which is important for the accurate design of SiGe HBTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO vertical well-aligned nanorods were grown on A1N/sapphire by using metal-organic chemical vapor deposition. We first observed the ZnO net-like structures under the nanorods. The different strain was determined in these two layers by using double crystal X-ray diffraction, Raman spectra, which revealed that the nanorods were relaxed and the net-like structures were strained. The optical properties of two layers were measured by using the cathodoluminescence and photo luminescence and the shift of UV peaks was observed. Moreover, the growth mechanism of the ZnO nanorods and the net-like structures is discussed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modified version of the Jain-Roulston (J-R) model is developed that takes into account the compensation effect of B to Ge in strained SiGe layers for the first time. Based on this new model, the distribution of the bandgap narrowing (BGN) between the conduction and valence bands is calculated. The influence of this distribution on the transport characteristics of abrupt SiGe heterojunction bipolar transistors (HBTs) has been further considered by using the tunnelling and thermionic emission mechanisms instead of the drift and diffusion mechanisms at the interfaces where discontinuities in energy levels appear. The results show that our modified J-R model better fits the experimental values, and the energy band structure has a strong influence on electrical characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-linger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880 mu m(2)) is fabricated with 2 mu m double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10 V and the collector-base junction breakdown voltage BVCBO is 16 V with collector doping concentration of 1 x 10(17) cm(-3) and thickness of 400 nm. The device exhibited a maximum oscillation frequency f(max) of 35.5 GHz and a cut-off frequency f(T) of 24.9 GHz at a dc bias point of I-C = 70 mA and the voltage between collector and emitter is V-CE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0 dBm to 21 dBm. A maximum output power of 29.9 dBm (about 977 mW) is obtained at an input power of 18.5 dBm with a gain of 11.47 dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, f(max) and f(T) are improved by about 83.9% and 38.3%, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taking into account the compensation effect of B to Ge in strained SiGe layers for the first time, the effect of heavily doped boron on the bandgap narrowing of strained SiGe layers is calculated, and the classical Jain-Roulston (J-R) model is modified. The results show that our modified J-R model well fits the experimental values. Based on the modified J-R model, the real bandgap narrowing distribution between the conduction and valence bands is further calculated, which has great influence on modelling the electrical characteristics of SiGe heterojunction bipolar transistors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium nitride (AlN) films grown with dimethylethylamine alane (DMEAA) are compared with the ones grown with trimethylaluminium (TMA). In the high-resolution x-ray diffraction Omega scans, the full width at half maximum (FWHM) of (0002) AlN films grown with DMEAA is about 0.70 deg, while the FWHM of (0002) AlN films grown with TMA is only 0.11 deg. The surface morphologies of the films are different, and the rms roughnesses of the surface are approximately identical. The rms roughness of AlN films grown with DMEAA is 47.4 nm, and grown with TMA is 69.4 nn. Although using DMEAA as the aluminium precursor cannot improve the AlN crystal quality, AlN growth can be reached at low temperature of 673 K. Thus, DMEAA is an alternative aluminium precursor to deposit AlN film at low growth temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

National High Technology Research and Development Program of China 2007AA03Z112;Program of Ministry of Education of China 20060183030;Program of Jilin Provincial Science and Technology Department of China 20070709;Program of Bureau of Science and Technology of Changchun City 2007107

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The room-temperature photoluminescence (PL) of copper doped zinc sulfide (ZnS:Cu) nanoparticles were investigated. These ZnS:Cu nanoparticles were synthesized by a facile wet chemical method, with the copper concentration varying from 0 to 2 mol%. By Gaussian fitting, the PL spectrum of the undoped ZnS nanoparticles was deconvoluted into two blue luminescence peaks (centered at 411 nm and 455 nm, respectively), which both can be attributed to the recombination of the defect sates of ZnS. But for the doped samples, a third peak at about 500 nm was also identified. This green luminescence originates from the recombination between the shallow donor level (sulfur vacancy) and the t(2) level of Cu2+. With the increase of the CU2+ concentration, the green emission peak is systematically shifted to longer wavelength. In addition, it was found that the overall photoluminescence intensity is decreased at the Cu2+ concentration of 2%. The concentration quenching of the luminescence may be caused by the formation of CuS compound. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexangular indium nitride nanoflower pattern is observed from scanning electron microscopy and atomic force microscopy. The sample is grown on c-plane (0001) sapphire by metal organic chemical vapor deposition with intentional introduction of hydrogen gas. With the aid of hydrogen, a stable existence of metallic indium is achieved. This will induce the growth of InN nanoflowers via self-catalysis vapor-liquid-solid (VLS) process. It is found that the VLS process is modulated by the interface kinetics and thermodynamics among the sapphire substrate, indium, and InN, which leads to the special morphology of the authors' InN nanoflower pattern. (c) 2006 American Institute of Physics.