65 resultados para Cone and plate
Resumo:
The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.
Resumo:
This paper presents a summary of the authors' recent work in following areas: (1) The stress-strain fields at crack tip in Reissner's plate. (2) The calculations of the stress intensity factors in finite size plates. (3) The stress-strain fields at crack tip in Reissner's shell. (4) The calculations of the stress intensity factors and bulging coefficients in finite size spherical shells. (5) The stress-strain fields along crack tip in three dimensional body with surface crack. (6) The calculation of stress intensity factors in a plate with surface crack.
Resumo:
Resumo:
Detailed analysis of some difficult aspects has been made from modeling the platemovement. A new method of using differential density of material (instead of differentialtemperature) has been developed in the experiments. The effect of convection of mantleon the plate movement has been studied using a centrifugal technique, and a patternshowing the recurrence of the plate movement has been successfully obtained. In this paper, a criterion De=Dm is presented for the similarity of the model to thecounterpart of the original mantle. According to the criterion, what happens in the modelin a span of ten minutes suggests a process of the "original model" going on in geologi-cal time of three million years.
Resumo:
From observed data on lithospheric plates, a unified empirical law for plate motion,valid for continental as well as oceanic plates, is obtained in the following form: The speedof plate motion U depends linearly on a geometric parameter T_d, ratio of the sum of effectiveridge length and trench arc length to the sum of area of continental part of plate and total areaof cold sinking slab. Based on this unified law, a simple mechanical analysis shows that, themain driving forces for lithospheric plates come from push along the mid-ocean ridge andpull by the cold sinking slab, while the main drag forces consist of the viscous traction beneaththe continental part of plate and over both faces of the sinking slab. Moreover, the specific-push along ridge and pull by slab are found to be of equal magnitude.
Resumo:
Modeling results are presented concerning the characteristicsoflaminar and turbulentargonplasmajetsimpingingnormally upon a flat plate (workpiece) in ambient air. It is found that the presence of the flat plate significantly enhances the entrainment rate of ambient air into the jets and affects on the flow and temperature fields in the near-plate region of the jets. At comparatively large distances between the plate and the jet inlet, the axial gradients of the plasma parameters in the laminarplasmaimpinging-jets assume values much less than those in the turbulentplasmaimpinging-jets.
Resumo:
A parallel plate flow chamber was used to study the interaction force between human IgG (immobilized on a chip surface as ligand) and goat anti-human IgG (immobilized on microspheres surface as receptor). First, it was demonstrated that the binding force between the microspheres and the chip surface came from the bio-specific interaction between the antigen and the antibody. Secondly, it was obtained that the critical shear rate to detach microspheres from the chip surface increases with the ligand surface concentration. Finally, two models to estimate the antigen-antibody bond strength considering bonds' positions were proposed and analyzed.
Resumo:
It is well-known that cone effect or focus anisoplanatism is produced by the limited distance of a laser guide star (LGS) which is created within the Earth atmosphere and consequently located at a finite distance from the observer. In this paper, the cone effect of the LGS for different vertical profiles of the refractive index structure constant Cn2 is numerically investigated by using a revised computer program of atmospheric propagation of optical wave and an adaptive optics (AO) system including dynamic control process. According to the practice, the overall tilt for the tilt-correction mirror is obtained from a natural star and the aberrated wavefront for phase correction of the deformable mirror is obtained from a LGS in our numerical simulation. It is surprisingly found that the effect of altitude of the LGS on the AO phase compensation effectiveness by using the commonly-available vertical profiles of Cn2 and the lateral wind speed in the atmosphere is relatively weak, and the cone effect for some Cn2 profiles is even negligible. It is found that the cone effect does not have obvious relationship with the turbulence strength, however, it depends on the vertical distribution profile of Cn 2 apparently. On the other hand, the cone effect depends on the vertical distribution of the lateral wind speed as well. In comparison to a longer wavelength, the cone effect becomes more obvious in the case of a shorter wavelength. In all cases concerned in this paper, an AO system by using a sodium guide star has almost same phase compensation effectiveness as that by using the astronomical target itself as a beacon. Effect of dynamic control process in an AO system on the cone effect is studied in this paper for the first time within our knowledge.
Resumo:
Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.
Resumo:
A new method is presented here to analyse the Peierls-Nabarro model of an edge dislocation in a rectangular plate. The analysis is based on the superposition scheme and series expansions of complex potentials. The stress field and dislocation density field on the slip plane can be expressed as the first and the second Chebyshev polynomial series respectively. Two sets of governing equations are obtained on the slip plane and outer boundary of the rectangular plate respectively. Three numerical methods are used to solve the governing equations.
Resumo:
Effects of wall temperature on stabilities of hypersonic boundary layer over a 7-degree half-cone-angle blunt cone are studied by using both direct numerical simulation (DNS) and linear stability theory (LST) analysis. Four isothermal wall cases with Tw/T0= 0.5, 0.7, 0.8 and 0.9, as well as an adiabatic wall case are considered. Results of both DNS and LST indicate that wall temperature has significant effects on the growth of disturbance waves. Cooling the surface accelerates unstable Mack II mode waves and decelerates the first mode (Tollmien–Schlichting mode) waves. LST results show that growth rate of the most unstable Mack II mode waves for the cases of cold wall Tw/T0=0.5 and 0.7 are about 45% and 25% larger than that for the adiabatic wall, respectively. Numerical results show that surface cooling modifies the profiles of rdut/dyn and temperature in the boundary layers, and thus changes the stability haracteristic of the boundary layers, and then effects on the growth of unstable waves. The results of DNS indicate that the disturbances with the frequency range from about 119.4 to 179.1 kHz, including the most unstable Mack modes, produce strong mode competition in the downstream region from about 11 to 100 nose radii. And adiabatic wall enhances the amplitudes of disturbance according to the results of DNS, although the LST indicates that the growth rate of the disturbance of cold wall is larger. That because the growth of the disturbance does not only depend on the development of the second unstable mode.
Resumo:
This paper aims at investigating the size-dependent self-buckling and bending behaviors of nano plates through incorporating surface elasticity into the elasticity with residual stress fields. In the absence of external loading, positive surface tension induces a compressive residual stress field in the bulk of the nano plate and there may be self-equilibrium states corresponding to the plate self-buckling. The self-instability of nano plates is investigated and the critical self-instability size of simply supported rectangular nano plates is determined. In addition, the residual stress field in the bulk of the nano plate is usually neglected in the existing literatures, where the elastic response of the bulk is often described by the classical Hooke’s law. The present paper considered the effect of the residual stress in the bulk induced by surface tension and adopted the elasticity with residual stress fields to study the bending behaviors of nano plates without buckling. The present results show that the surface effects only modify the coefficients in corresponding equations of the classical Kirchhoff plate theory.
Resumo:
A new type of sensor with the flexible substrate is introduced. It is applicable in measuring instantaneous heat flux on the model surface in a hypersonic shock tunnel. The working principle, structure and manufacture process of the sensor are presented. The substrate thickness and the dynamic response parameter of the sensor are calculated. Because this sensor was successfully used in measuring the instantaneous heat flux on the surface of a flat plate in a detonation-driven shock tunnel, it may be effective in measuring instantaneous heat flux on the model surface.
Resumo:
The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.
Resumo:
Pool boiling of degassed FC-72 on a plane plate heater has been studied experimentally in microgravity. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Compared with terrestrial experiments, bubble behaviors are very different, and have direct effect on heat transfer. Small, primary bubbles attached on the surface seem to be able to suppress the activation of the cavities in the neighborhoods, resulting in a slow increase of the wall temperature with the heat flux. For the high subcooling, the coalesced bubble has a smooth surface and a small size. It is difficult to cover the whole heater surface, resulting in a special region of gradual transitional boiling in which nucleate boiling and local dry area can co-exist. No turning point corresponding to the transition from nucleate boiling to film boiling can be observed. On the contrary, the surface oscillation of the coalesced bubble at low subcooling may cause more activated nucleate sites, and then the surface temperature may keep constant or even fall down with the increasing heat flux. Furthermore, an abrupt transition to film boiling can also be observed. It is shown that heat transfer coefficient and CHF increase with the subcooling or pressure in microgravity, as observed in normal gravity.