161 resultados para Condensed Thiadiazoloquinoxalines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure and optical properties of freestanding GaN wurtzite quantum wires are studied in the framework of six-band effective-mass envelope function theory. It is found that the electron states are either twofold or fourfold degenerate. There is a dark exciton effect when the radius R of GaN wurtzite quantum wires is in the range of [0.7, 10.9] nm. The linear polarization factors are calculated in three cases, the quantum confinement effect (finite long wire), the dielectric effect and both effects (infinitely long wire). It is found that the linear polarization factor of a finite long wire whose length is much less than the electromagnetic wavelength decreases as R increases, is very close to unity (0.979) at R = I nm, and changes from a positive value to a negative value around R = 4.1 nm. The linear polarization factor of the dielectric effect is 0.934, independent of radius, as long as the radius remains much less than the electromagnetic wavelength. The result for the two effects shows that the quantum confinement effect gives a correction to the dielectric effect result. It is found that the linear polarization factor of very long (treated approximately as infinitely long) quantum wires is in the range of [0.8, 1]. The linear polarization factors of the quantum confinement effect of CdSe wurtzite quantum wires are calculated for comparison. In the CdSe case, the linear polarization factor of R = I nm is 0.857, in agreement with the experimental results (Hu et al 2001 Science 292 2060). This value is much smaller than unity, unlike 0.979 in the GaN case, mainly due to the big spin-orbit splitting energy Delta(so) of CdSe material with wurtzite structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the effect of different cap layers on the photoluminescence (PL) of self-assembled InAs/GaAs quantum dots (QDs). Based upon different cap layers, the wavelength of InAs QDs can be tuned to the range from 1.3 to 1.5 mum. An InAlAs and InGaAs combination layer can enlarge the energy separation between the ground and first excited radiative transition. GaAs/InAs short period superlattices (SLs) make the emission wavelength shift to 1.53 mum. The PL intensity of InAs QDs capped with GaAs/InAs SLs shows an anomalous increase with increasing temperature. We attribute this to the transfer of carriers between different QDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Condensed clusters of point defects within an InGaN/AlGaN double heterostructure grown by metal-organic vapor phase epitaxy on sapphire substrate have been observed using transmission electron microscopy. The existence of voids results in failure of the heterostructure in electroluminescence. The voids are 50-100 nm in diameter and are distributed inhomogeneously within In0.25Ga0.75N/AlGaN active layers. The density of the voids was measured as 10(15) cm(-3), which corresponds to a density of dangling bonds of 10(20) cm(-3). These dangling bonds may fully deplete free carriers in this double heterostructure and result in the heterostructure having high resistivity as confirmed by electrical measurement. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetoexciton polaron (MP) is investigated theoretically in a diluted magnetic semiconductor quantum dot (QD), with the Coulomb interaction and the sp-d exchange interaction included. The MP energy decreases rapidly with increasing magnetic field at low magnetic field and saturates at high magnetic field for small QDs, and the dependences of the MP energy on magnetic field are quite different for different QD radii due to the different carrier-induced magnetic fields B-MP. The competition between the sp-d exchange interaction and the band gap shrinkage results in there being a maximum exhibited by the MP energy With increasing temperature. Our numerical results are in good agreement with experiment (Maksimov A A, Bacher G, MacDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G and Molenkamp L W 2000 Phys. Rev. B 62 R7767).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temperature dependences of the orange and blue emissions in 10, 4.5, and 3 nm ZnS:Mn nanoparticles were investigated. The orange emission is from the T-4(1)-(6)A(1) transition of Mn2+ ions and the blue emission is related to the donor-acceptor recombination in the ZnS host. With increasing temperature, the blue emission has a red-shift. On the other hand, the peak energy of the orange emission is only weakly dependent on temperature. The luminescence intensity of the orange emission decreases rapidly from 110 to 300 K for the 10 nm sample but increases obviously for the 3 nm sample, whereas the emission intensity is nearly, independent of temperature for the 4.5 nm sample. A thermally activated carrier-transfer model has been proposed to explain the observed abnormal temperature behaviour of the orange emission in ZnS:Mn nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in situ energy dispersive x-ray diffraction study on nanocrystalline ZnS was carried out under high pressure up to 30.8 GPa by using a diamond anvil cell. The phase transition from the wurtzite to the zinc-blende structure occurred at 11.5 GPa, and another obvious transition to a new phase with rock-salt structure also appeared at 16.0 GPa-which was higher than the value for the bulk material. The bulk modulus and the pressure derivative of nanocrystalline ZnS were derived by fitting the Birch-Murnaghan equation. The resulting modulus was higher than that of the corresponding bulk material, indicating that the nanomaterial has higher hardness than the bulk material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A glass spherical microcavity only a few microns in diameter embedded with CdSexS1-x quantum dots (QDs) was fabricated using a physical method; it exhibited good optical stability under continuous-wave laser excitation with high power. We investigated the excitation power dependences of the emission intensity and the linewidth of both transverse electric and transverse magnetic resonance peaks of whispering gallery modes. Stimulated emission behaviour of multi-frequency modes is observed at room temperature. The low threshold value and large mode separation makes QD-containing microspheres promising for visible microlaser applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SiO2/Si/SiO2 nanometer double barriers (SSSNDB) with Si layers of twenty-seven different thicknesses in a range of 1-5 nm with an interval of 0.2 nm have been deposited on p-Si substrates using two-target alternative magnetron sputtering. Electroluminescence (EL) from the semitransparent Au film/SSSNDB/p-Si diodes and from a control diode without any Si layer have been observed under forward bias. Each EL spectrum of all these diodes can be fitted by two Gaussian bands with peak energies of 1.82 and 2.25 eV, and full widths at half maximum of 0.38 and 0.69 eV, respectively. It is found that the current, EL peak wavelength and intensities of the two Gaussian bands of the Au/SSSNDB/p-Si structure oscillate synchronously with increasing Si layer thickness with a period corresponding to half a de Broglie wavelength of the carriers. The experimental results strongly indicate that the EL originates mainly from two types of luminescence centres with energies of 1.82 and 2.25 eV in the SiO2 barriers, rather than from the nanometer Si well in the SSSNDB. The EL mechanism is discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-temperature time-resolved photoluminescence (PL) experiments have been performed on a semiconductor planar microcavity, which contains two sets of three In0.13Ga0.87As/GaAs quantum wells embedded in a 3 lambda /2 GaAs cavity. The spontaneous emission dynamics of both lower- and upper-branch polaritons is investigated as a function of exciton-cavity detuning under nonresonant optical excitation. It is found that the PL decay times of both branches are independent of cavity detuning while the PL rising kinetics of the lower- and upper-branch polaritons exhibits a significant difference. The rise time of the upper polarition branch shows a strong dependence on cavity detuning, while the rise time of the lower polarition branch is less sensitive to cavity detuning. Our results can be well understood in the framework of the theoretical prediction of Tassone et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A trilayer asymmetric superlattice, Si/Si1-xGex/Si1-yGey, is proposed, in which the broken inversion symmetry makes the microstructure optically biaxial; in particular, inequivalent interfaces in this heterostructure may cause a polarization ratio as large as about 2.5% in the absence of an external field. The electronic structure and absorption spectra for two types of trilayer superlattice with different parameters are calculated by use of the tight-binding model; the findings indicate the importance of the carrier confinement for the anisotropy value. The effect of external electric field on the optical anisotropy for such structures has also been discussed, and a Pockels coefficient of 10-9 cm V-1 estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By analysing the carrier dynamics based on the rate equations and the change of the refractive index due to the efficient carrier capture, we have calculated the carrier capture process in the InAs/GaAs system detected by a simple degenerate pump-probe technique. The calculated results are found to be in good agreement with the experimental findings. Our results indicate that this simple technique, with the clear advantage of being easy to carry out, can be very useful in studying the carrier dynamics for some specific structures such as InAs ultrathin layers embedded in a GaAs matrix described here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical spectra of CdSe nanocrystals are measured at room temperature under pressure ranging from 0 to 5.2 GPa. The exciton energies shift linearly with pressure below 5.2 GPa. The pressure coefficient is 27 meV GPa(-1) for small CdSe nanocrystals with the radius of 2.4 nm. With the approximation of a rigid-atomic pseudopotential, the pressure coefficients of the energy band are calculated. By using the hole effective-mass Hamiltonian for the semiconductors with wurtzite structure under various pressures, we study the exciton states and optical spectra for CdSe nanocrystals under hydrostatic pressure in detail. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbit coupling on the hole states are investigated. The Coulomb interaction of the exciton states is also taken into account. It is found that the theoretical results are in good agreement with the experimental values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pressure behaviour of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots (QDs) has been studied at 15 K in the pressure range of 0-1.3 GPa. The atomic force microscopy image shows that the QDs have a multi-modal distribution in size. Three emission peaks were observed in the photoluminescence (PL) spectra, corresponding to the different QD families. The measured pressure coefficients are 82, 93 and 98 meV GPa(-1) for QDs with average lateral size of 26, 52 and 62 nm, respectively. The pressure coefficient of small QDs is about 17% smaller than that of bulk In0.55Al0.45As An envelope-function calculation was used to analyse the effect of pressure-induced change of barrier height, effective mass and dot size on the pressure coefficients of QDs. The Gamma-X state mixing was also included in the evaluation of the reduction of the pressure coefficients. The results indicate that both the pressure-induced increase of effective mass and Gamma-X mixing respond to the decrease of pressure coefficients, and the Gamma-X mixing is more important for small dots. The calculated Gamma-X interaction potentials are 15 and 10 meV for QDs with lateral size of 26 and 52 nm, respectively. A type-II alignment for the X conduction band is suggested according to the pressure dependence of the PL intensities. The valence-band offset was then estimated as 0.15 +/- 0.02.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After capping InAs islands with a thin enough GaAs layer, growth interruption has been introduced. Ejected energy of self-organized InAs/GaAs quantum dots has been successfully tuned in a controlled manner by changing the thickness of GaAs capping layer and the time of growth interruption and InAs layer thickness. The photoluminescence (PL) spectra showing the shift of the peak position reveals the tuning of the electronic states of the QD system. Enhanced uniformity of Quantum dots is observed judging from the decrease of full width at half maximum of FL. Injection InAs/GaAs quantum dot lasers have been fabricated and performed on various frequencies. (C) 2000 Published by Elsevier Science B.V. All rights reserved.