105 resultados para Color morph
Resumo:
Based on the phase-conjugation polarization interference between two two-photon processes, we theoretically investigated the attosecond scale asymmetry sum-frequency polarization beat in four-level system (FASPB). The field correlation has weak influence on the FASPB signal when the laser has narrow bandwidth. Conversely, when the laser has broadband linewidth, the FASPB signal shows resonance-nonresonance cross correlation. The two-photon signal exhibits hybrid radiation-matter detuning terahertz; damping oscillation, i.e., when the laser frequency is off resonance from the two-photon transition, the signal exhibits damping oscillation and the profile of the two-photon self-correlation signal also exhibits zero time-delay asymmetry of the maxima. We have also investigated the asymmetry of attosecond polarization beat caused by the shift of the two-photon self-correlation zero time-delay phenomenon, in which the maxima of the two two-photon signals are shifted from zero time-delay point to opposite directions. As an attosecond ultrafast modulation process, FASPB can be intrinsically extended to any level-summation systems of two dipolar forbidden excited states.
Resumo:
We report the observation of intense spontaneous emission of green light from LiF:F-2:F-3(+) centers in active channel waveguides generated in lithium fluoride crystals by near-infrared femtosecond laser radiation. While irradiating the crystal at room temperature with 405 nm light from a laser diode, yellow and green emission was seen by the naked eye. Stripe waveguides were fabricated by translating the crystal along the irradiated laser pulse, and their guiding properties and fluorescence spectra at 540 nm demonstrated. This single-step process inducing a waveguide structure offers a good prospect for the development of a waveguide laser in bulk LiF crystals.
Resumo:
A voltage-controlled tunable two-color infrared detector with photovoltaic (PV) and photoconductive (PC) dual-mode operation at 3-5 mu m and 8-14 mu m using GaAs/AlAs/AlGaAs double barrier quantum wells (DBQWs) and bound-to-continuum GaAs/AlGaAs quantum wells is demonstrated. The photoresponse peak of the photovoltaic GaAs/AlAs/GaAlAs DBQWs is at 5.3 mu m, and that of the photoconductive GaAs/GaAlAs quantum wells is at 9.0 mu m. When the two-color detector is under a zero bias, the spectral response at 5.3 mu m is close to saturate and the peak detectivity at 80 K can reach 1.0X10(11) cmHz(1/2)/W, while the spectral photoresponsivity at 9.0 mu m is absolutely zero completely. When the external voltage of the two-color detector is changed to 2.0 V, the spectral photoresponsivity at 5.3 mu m becomes zero while the spectral photoresponsivity at 9.0 mu m increases comparable to that at 5.3 mu m under zero bias, and the peak detectivity (9.0 mu m) at 80 K can reach 1.5X10(10) cmHz(1/2)/W. Strictly speaking, this is a real bias-controlled tunable two-color infrared photodetector. We have proposed a model based on the PV and PC dual-mode operation of stacked two-color QWIPs and the effects of tunneling resonance with narrow energy width of photoexcited electrons in DBQWs, which can explain qualitatively the voltage-controlled tunable behavior of the photoresponse of the two-color infrared photodetector. (C) 1996 American Institute of Physics.
Resumo:
The effect of C-12(6+) heavy ions bombardment on mutagenesis in Salvia splendens Ker-Gawl. was studied. Dose-response studies indicated that there was a peak of malformation frequency of S. splendens at 200 Gy. Abnormal leaf mutants of the bileaf, trileaf and tetraleaf conglutination were selected. Meanwhile, a bicolor flower chimera with dark red and fresh red flower was isolated in M1 generation of S. splendens. Random amplified polymorphic DNA (RAPD) analysis demonstrated that DNA variations existed among the wild-type, fresh and dark red flower shoots of the chimera. The dark red flower shoots of the chimera were conserved and cultivated at a large-scale through micropropagation. MS supplemented with 2.0 mg/L BA and 0.3 mg/L NAA was the optimal medium in which the maximum proliferation ratio (5.2-fold) and rooting rate (88%) were achieved after 6 weeks. Our findings provide an important method to improve the ornamental quality of S. splendens.
Resumo:
Single crystals of alpha-alumina were irradiated at room temperature with 1.157 (GeVFe)-Fe-56, 1.755 (GeVXe)-Xe-136 and 2.636 (GeVU)-U-238 ions to fluences range from 8.7 x 10(9) to 6 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet visible absorption measurements. The investigation reveals the presence of various color centers (F, F+, F-2(2+), F-2(+) and F-2 centers) appearing in the irradiated samples. It is found that the ratio of peak absorbance of F-2 to F centers increases with the increase of the atomic numbers of the incident ions from Fe, Xe to U ions, so do the absorbance ratio of F-2(2+) to F+ centers and of large defect cluster to F centers, indicating that larger defect clusters are preferred to be produced under heavier ion irradiation. Largest color center production cross-section was found for the U ion irradiation. The number density of single anion vacancy scales better with the energy deposition through processes of nuclear stopping, indicating that the nuclear energy loss processes determines the production of F-type defects in heavy ion irradiated alpha-alumina.
Resumo:
Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K-0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass m(s) and the color superconducting gap Delta. Increasing B and m(s) or decreasing Delta can stiffen the EOS which results in the larger maximum masses of neutron stars.
Resumo:
Silica glass samples were implanted with 1.157 GeV Fe-56 and 1.755 GeV Xe-136 ions to fluences range from 1 x 10(11) to 3.8 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E' center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E' center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E' center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (alpha band), 3.2 eV (beta band) and 2.67 eV (gamma band) when excited at 5 eV. The intensities of alpha and gamma bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of beta band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of alpha and gamma bands and electronic energy loss processes determine the bleaching of beta band in heavy ion irradiated silica glass. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified.
Resumo:
Both commercial and scientific applications often need to transform color images into gray-scale images, e. g., to reduce the publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly well-defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving. Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer interactions.