78 resultados para Chromia loaded sulfated titania
Resumo:
The sulfated galactan fraction F1 isolated from the red seaweed, Porphyra haitanensis, showed typical porphyran structure. It has a linear backbone of alternating 3-linked beta-D-galactosyl units and 4-linked alpha-L-galactosyl 6-sulfate and 3,6-anhydro-alpha-L-galactosyl units. The L-residues are mainly composed of alpha-L-galactosyl 6-sulfate units, and the 3,6-anhydrogalactosyl units are minor. Partial methylation occurred at the C-6 position of the D-galactosyl units and at the C-2 position of the 3,6-anhydro-alpha-L-galactosyl units. Intraperitoneal administration of F1 significantly decreased the lipid peroxidation in aging mice. F1 treatment increased the total antioxidant capacity and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in aging mice. The results indicated that F1 had significant in vivo antioxidant activity. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ulvan, a sulfated polysaccharide from Ulva pertusa, was degraded to yield two low molecular weight fractions U1 and U2. The molecular weights of ulvan and its fractions were determined and varied from 151.6 to 28.2 kDa. They were fed to rats on a hypercholesterolemic diet for 21 days to evaluate and compare the antihyperlipidemic actions. Ulvan-based diet significantly lowered the levels of serum total cholesterol (-45.2%, P < 0.05) and low density lipoprotein cholesterol (LDL-cholesterol, -54.1%, P < 0.05). While U1- and U2-based diets significantly elevated the levels of serum high density lipoprotein cholesterol (HDL-cholesterol, +22.0% for U1, not significant; +61.0% for U2; P < 0.05) and reduced triglyceride (TG, -82.4% for U1, -77.7% for U2; P < 0.05) in rats as compared to control diet. In addition, consumptions of various ulvans significantly increased fecal bile acid excrement. The results indicated that ulvans with different molecular weights exhibited diverse effects on lipid metabolism. The high molecular weight ulvan was effective in serum total and LDL-cholesterol, whereas low molecular weight fractions were in TG and HDL-cholesterol. The fractions were considered to be more beneficial to hyperlipidemia associated with diabetes over ulvan. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Three sulfated polysaccharide fractions (F1, F2, and F3) were isolated from Porphyra haitanesis, an important economic alga in China, through anion-exchange column chromatography and their in vitro antioxidant activities were investigated in this study. Galactose was the main sugar unit of the three fractions. The analytical results indicated that polysaccharide fractions from P. haitanesis had similar chemical components to porphyran from other species, but differed in their high sulfate content. The sulfate content of F1, F2 and F3 was 17.4%, 20.5% and 33.5% respectively. All three polysaccharide fractions showed antioxidant activities. They had strong scavenging effect on superoxide radical, and much weaker effect on hydroxyl free radical. Lipid peroxide in rat liver microsome was significantly inhibited, and H2O2 induced hemolysis of rat erythrocyte was partly inhibited by F1, F2 and F3. Among them, F3 showed strongest scavenging effect on superoxide radical; F2 had strongest effect on hydroxyl radical and lipid peroxide.
Resumo:
Fucoidan, a group of sulfated heteropolysaccharide, was extracted from Laminaria japonica, an important economic alga species in China. Three sulfated polysaccharide fractions (F1, F2, and F3) were successfully isolated through anion-exchange column chromatography and had their antioxidant activities investigated employing various established in vitro systems, including superoxide and hydroxyl radical scavenging activity, chelating ability, and reducing power. Chemical analysis suggested that F1 and F3 were heteropolysaccharide in which galactose was the major component, while F2 was a typical fucoidan. All fractions possessed considerable antioxidant activity, and F1, F2 and F3 had stronger antioxidant ability than fucoidan in certain tests. The correlation between the sulfate content and scavenging superoxide radical ability was positive. Available data obtained with in vitro models suggested that the ratio of sulfate content/fucose was an effective indicator to antioxidant activity of the samples. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Adsorption and interaction of H2S/SO2 on titania as well as on alumina for comparison has been studied by temperature programmed desorption (TPD), infrared (IR) spectroscopy and temperature programmed electronic conductivity (TPEC) techniques. It was found that the adsorption of both H2S acid SO2 on TiO2 is much greater than on Al2O3. The electronic conductivity of TiO2 measured by TPEC varies significantly as adsorption and desorption takes place on TiO2, showing a strong interaction between TiO2 and adsorbates. At temperature above 200 degrees C, H2S or SO2 adsorbed on TiO2 can be converted into S, H2O and SO2 or SO3. While on the hydrogen treated TiO2, H2S is decomposed into S and H-2, SO2 into S. The active sites on TiO2 surface cannot be so strongly adsorbed by SO2 that it is much more resistant to the sulfation reaction. Unlike TiO2, Al2O3 only provides surface adsorption sites, which can be readily sulfated. The data obtained support one's understanding why TiO2 exhibits a better catalytic performance than that of Al2O3 as a Claus reaction catalyst. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Titania sols were prepared by acid hydrolysis of a TiCl4 precursor instead of titanium alkoxides. The effect of acid concentration on the particle size and stability of sol was investigated. Stable titania sols with mean particle size of 14 nm could be obtained when the H+/Ti molar ratio was 0.5. The titania sols were modified with Pt, SiO2, ZrO2, WO3 and MoO3 to prepare a series of modified catalysts, which were used for the photocatalytic oxidation of formaldehyde at 37 degreesC. They showed different photocatalytic activities due to the influence of the additives. Comparing with pure TiO2, the addition of silica or zirconia increased the photocatalytic activity, while the addition of Pt and MoO3 decreased the activity, and the addition Of WO3 had little effect on the activity. It is of great significance that the conversion of formaldehyde was increased up to 94% over the SiO2-TiO2 catalyst. The increased activity was partly due to higher surface area and porosity or smaller crystallite size. A comparison of our catalyst compositions with the literature in this field suggested that the difference in activity due to the addition of a second metal oxide maybe caused by the surface chemistry of the catalysts, particularly the acidity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The surface sites of sulfated zirconia were investigated in situ by laser-induced fluorescence spectroscopy using aniline as the probe molecule. Different from the cases for many other oxides, the aniline adsorbed on the unique active sites of sulfated zirconia at r.t. is changed into another species, which emits a characteristic fluorescence band at 422 nm. The results illustrate that the sulfate groups in sulfated zirconia are favorable for the generation of these unique active sites, which also rarely exist on pure zirconia composed of tetragonal and monoclinic phases but do not exist on pure zirconia composed of monoclinic phase. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A series of acoustic emission (AE) experiments of rock failure have been conducted under cyclic load in tri-axial stress tests. To simulate the hypocenter condition the specimens are loaded by the combined action of a constant stress, intended to simulate
Resumo:
In order to study the earthquake recurrence and the characteristics of earthquake series, rupture tests of rock samples and plexiglass samples were made. On rock samples, a number of acoustic emission (AE) and strain measuring points were deployed; the load was one side direct shear. The variation characteristics of AE and strain at different detecting points around the extra large fracture were observed and studied. On plexiglass samples, a series of inclined cracks were prefabricated by a small-scale compressive testing machine. The samples were then loaded on a shockproof platen, when the samples were loaded, the stress intensity factor (SIF) was determined by the laser interferometric technique and shadow optical method of caustics. The fracture conditions such as material toughness around the extra large fracture were also studied. From those experimental results and the theory of fracture mechanics, the earthquake recurrence period and the trend of post-seismic development were studied.
Resumo:
It has been reported([1]) that when a loosely packed column of saturated sand in a vertical cylindrical container is shock loaded axially by dropping to the floor, large horizontal cracks initiate, grow and eventually fade away in the sand as it settles under gravity. This paper shows that a similar phenomenon can also be observed when shock loading is replaced by forcing water to percolate upward through the sand column. It is believed that our result sheds further light on the physics of formation of these cracks.
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.
Resumo:
A dimensionless number, termed response number in the present paper, is suggested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic governing equations of beams and plates. The number is defined as the product of the Johnson's damage number and the square of the half of the slenderness ratio for a beam; the product of the damage number and the square of the half of the aspect ratio for a plate or membrane loaded dynamically. Response number can also be considered as the ratio of the inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are reflected in this dimensionless number: the inertia of the applied dynamic loading, the resistance ability of the material to the deformation caused by the loading and the geometrical influence of the structure on the dynamic response. For an impulsively loaded beam or plate, the final dimensionless deflection is solely dependent upon the response number. When the secondary effects of finite deflections, strain-rate sensitivity or transverse shear are taken into account, the response number is as useful as in the case of simple bending theory. Finally, the number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of general shape.
Resumo:
In this paper, a real-time and in situ optical measuring system is reported to observe high-velocity deformations of samples subjected to impact loading. The system consists of a high-speed camera, a He-Ne laser, a frame grabber, a synchronization device and analysis software based on digital correlation theory. The optical system has been adapted to investigate the dynamic deformation field and its evolution in notched samples loaded by an split Hopkinson tension bar, with a resolution of 50 pin and an accuracy of 0.5 mum. Results obtained in experiments are discussed and compared with numerical simulations. It is shown that the measuring system is effective and valid.
Assessment of Microscale Test Methods of Peeling and Splitting along Surface of Thin-Film/Substrates
Resumo:
Peel test methods are assessed through being applied to a peeling analysis of the ductile film/ceramic substrate system. Through computing the fracture work of the system using the either beam bend model (BB model) or the general plane analysis model (GPA model), surprisingly, a big difference between both model results is found. Although the BB model can capture the plastic dissipation phenomenon for the ductile film case as the GPA model can, it is much sensitive to the choice of the peeling criterion parameters, and it overestimates the plastic bending effect unable to capture crack tip constraint plasticity. In view of the difficulty of measuring interfacial toughness using peel test method when film is the ductile material, a new test method, split test, is recommended and analyzed using the GPA model. The prediction is applied to a wedge-loaded experiment for Al-alloy double-cantilever beam in literature.