162 resultados para Choruses (Mixed voices)
Mixed alcohols synthesis from carbon monoxide hydrogenation over potassium promoted β-Mo2C catalysts
Resumo:
We derive a class of inequalities for detecting entanglement in the mixed SU(2) and SU(1, 1) systems based on the Schrodinger-Robertson indeterminacy relations in conjugation with the partial transposition. These inequalities are in general stronger than those based on the usual Heisenberg uncertainty relations for detecting entanglement. Furthermore, based on the complete reduction from SU(2) and SU(1,1) systems to bosonic systems, we derive some entanglement conditions for two-mode systems. We also use the partial reduction to obtain some inequalities in the mixed SU(2) (or SU(1, 1)) and bosonic systems.
Resumo:
N-Arylamides were exclusively obtained in moderate to good yields from selenium-catalyzed reactions of nitroaromatics with amides in the presence of CO and mixed organic bases Et3N and DBU.
Resumo:
Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.