47 resultados para Characterization andBiotechnology application


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrophic and anaerobic microalgae are of significance in both basic research and industrial application. A microalga strain was isolated from a wastewater treatment pond and identified as Chlorella sorokiniana Shihira et W. R. Krauss GXNN01 in terms of morphology, physiology, and phylogeny. The strain grows rapidly in heterotrophic or mixotrophic conditions with addition of various carbon sources, and even in anaerobic conditions. The maximum growth rate reached 0.28 d(-1) when using D,L-malate as the carbon source, and the protein content of the microalgae was 75.32% in cell dry weight. The strain was shown to be capable of (1) utilizing D, L-malate only with light, (2) inhibiting photosynthesis in mixotrophic growth, and (3) growing in anaerobic conditions with regular photosynthesis and producing oxygen internally. This study demonstrates the influence of oxygen (aerobic vs. anaerobic) and metabolic regime (autotrophy, mixotrophy, heterotrophy) on the physiological state of the cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Size-controllable tin oxide nanoparticles are prepared by heating ethylene glycol solutions containing SnCl2 at atmospheric pressure. The particles were characterized by means of transmission electron microscopic (TEM), X-ray diffraction (XRD) studies. TEM micrographs show that the obtained material are spherical nanoparticles, the size and size distribution of which depends on the initial experimental conditions of pH value, reaction time, water concentration, and tin precursor concentration. The XRD pattern result shows that the obtained powder is SnO2 with tetragonal crystalline structure. On the basis of UV/vis and FTIR characterization, the formation mechanism of SnO2 nanoparticles is deduced. Moreover, the SnO2 nanoparticles were employed to synthesize carbon-supported PtSnO2 catalyst, and it exhibits surprisingly high promoting catalytic activity for ethanol electrooxidation.