108 resultados para Catalyst activity
Resumo:
A novel ZnIn2S4 catalyst synthesized by hydrothermal method shows high and stable photocatalytic activity for water reduction under visible light illumination.
Resumo:
In this study, conventional TiO2 powder was heated in hydrogen (H-2) gas at a high temperature as pretreatment. The photoactivity of the treated TiO2 samples was evaluated in the photodegradation of sulfosalicylic acid (SSA) in aqueous suspension. The experimental results demonstrated that the photodegradation rates of SSA were significantly enhanced by using the H-2-treated TiO2 catalysts and an optimum temperature for the H-2 treatment was found to be of 500-600 degreesC. The in situ electron paramagnetic resonance (EPR) signal intensity of oxygen vacancies (OV) and trivalent titanium (Ti3+) associated with the photocatalytic activity was studied. The results proved the presence of OV and Ti3+ in the lattice of the H2-treated TiO2 and indicated that both were contributed to the enhancement of photocatalytic activity. Moreover, the experimental results presented that the EPR signal intensity of OV and Ti3+ in the H-2-treated TiO2 samples after 10 months storage was still significant higher than that in the untreated TiO2 catalyst. The experiment also demonstrated that the significant enhancement occurred in the photodegradation of phenol using the H-2-treated TiO2. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The Al-pillared clay catalyst obtained by exposing activated clay powder to sulfuric acid and aluminium salts and calcining in air at 373-673 K, was found to be highly active for the title reaction. The results indicated that pillared layer clay of the mixed oxide has been employed as parent catalysts for their definite structure and special properties which can be modified by the substitution of L and B acid sites cations. Solid acid catalyst of Supported aluminium was found to be highly active and selective at the 373-473 K temperature range for heterogeneous esterification. The activity is mainly attributed to the Lewis (and a considerably small number of Bronsted) acid sites whose number and strength increased due to pillaring. The water produced in the esterification can be induced by Al3+, which makes the catalyst surface to form strong B acid. Their acidities are obtained by pH measurement. If only B acid sites are > 70%, and pH < 1 in the 2-ethoxyethanol, there exists an activity of esterification. The used catalyst gave identical results with that of the fresh one. X-ray diffraction spectra show that the composition and active phase of the used catalysts are the same as the fresh ones. The kinetic study of the reaction was carried out by an integral method of analysis. The kinetic equation of surface esterification is y = 2.36x - 0.98.
Resumo:
Catalytic activity of Pt catalysts for soot oxidation was studied using temperature programmed reactions. The activity of Pt loaded over TiO2-SiO2 (Pt/TiO2-SiO2) showed higher activity than other Pt/MOx systems (MOx = TiO2, ZrO2, SiO2, Al2O3. TiO2-ZrO2. TiO2-Al2O3, ZrO2-SiO2, ZrO2-Al2O3, SiO2-Al2O3). The activity was highest when the molar ratio of TiO2/(TiO2 + SiO2) ranged from 0.4 to 0.7. The effect of pretreatment with a gas containing low SO2 concentrations on the activity was compared for Pt/SiO2, Pt/TiO2 and Pt/TiO2-SiO2. In the case of Pt/TiO2-SiO2, the activity was markedly promoted by the pretreatment whereas no variation in the activity was observed for Pt/SiO2. The difference in the behavior towards the SO, pretreatment was attributed to property difference in the supports for sulfate accumulation. The high activity of Pt/TiO2-SiO2 was also confirmed under practical conditions with a diesel engine exhaust using a catalyst-supported diesel particulate filter (DPF). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Y2Ta2O5N2 is presented as a novel photocatalyst with high activity for water splitting under visible-light irradiation in the presence of appropriate sacrificial reagents; the activity for reduction to H-2 is increased by the incorporation of Pt or Ru as a co-catalyst, with a significant increase in production efficiency when both Pt and Ru are present.
Resumo:
A zirconium-based Ziegler-Natta catalytic system has been tested in the dimerization of 1-butene. It was found that the concentration of Et2AlCl, Ph3P and PhONa as well as the reaction temperature had great influences on the activity and selectivity of the catalyst. Under the optimum reaction conditions, the conversion of 1-butene is 91.9%, and the selectivity of dimers is 76.7%. Basic ligands such as Ph3P and PhONa can inhibit isomerization of 1-butene to 2-butene effectively. In addition, the metal hydride mechanism was also suggested and some indirect evidence was obtained in favor of this mechanism.
Resumo:
It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode.
Resumo:
A novel colloid method using (WO3)(n)center dot xH(2)O as colloidal source was developed to prepare Pd/C catalyst for formic acid oxidation. Transmission electron microscopy image shows that the Pd/C nanoparticles have an average size of 3.3 nm and a narrow size distribution. Electrochemical measurements indicate that the Pd/C catalyst exhibits significantly high electrochemical active surface area and high catalytic activity with good stability for formic acid oxidation compared with that prepared by common method.
Resumo:
The hybrid material based on WO3 and Vulcan XC-72R carbon has been used as the support of Pd nano-catalysts. The resultant Pd-WO3/C catalysts in a large range of WO3 content exhibit excellent catalytic activity and stability for formic acid electrooxidation. The great improvement in the catalytic performance is attributed to the uniform dispersion of Pd with less particle sizes on the WO3/C support and the hydrogen spillover effect which greatly accelerates the dehydrogenation of HCOOH on Pd.
Resumo:
Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.
Resumo:
Various organometallic compounds (diphenylzinc, dibenzylzinc, dicyclohexylzinc, bis( pentafluorophenyl) zinc, diethylzinc, di(n-butyl) zinc, triethylaluminum) were used to form Y(CCl3COO)(3)-organometallic compound-glycerol catalyst for the copolymerization of carbon dioxide and propylene oxide. It was found that Y(CCl3COO)(3)-diphenylzinc-glycerol catalyst showed the highest catalytic activity, at optimum conditions the yield could be as high as 478.8 ( g polymer/mol Zn h).
Resumo:
A catalyst of Rh nanoparticles supported on a carbon nanofiber, 5 wt.% Rh/CNF, with an average size of 2-3 nm has been prepared by a method of incipient wetness impregnation. The catalyst presented a high activity in the ring hydrogenation of phenol in a medium of supercritical CO2 (scCO(2)) at a low temperature of 323 K. The presence of compressed CO2 retards hydrogenation of cyclohexanone to cyclohexanol under the reaction conditions used, and this is beneficial for the formation of cyclohexanone, increasing the selectivity to cyclohexanone.
Resumo:
A magnetic nanoparticle (MNP)-supported di(2-pyridyl)methanol palladium dichloride complex was prepared via click chemistry. The MNP-supported catalyst was evaluated in Suzuki coupling reaction in term of activity and recyclability in DMF. It was found to be highly efficient for Suzuki coupling reaction using aryl bromides as substrates and could be easily separated by an external magnet and reused in five consecutive runs without obvious loss of activity.
Resumo:
We firstly reported a novel polymer matrix fabricated by type I collagen and polymers, and this matrix can be used as nanoreactors for electrodepositing platinum nanoclusters (PNCs). The type I collagen film has a significant effect on the growth of PNCs. The size of the platinum nanoparticles could be readily tuned by adjusting deposition time, potential and the concentration of electrolyte, which have been verified by field-emitted scanning electron microscopy (FE-SEM). Furthermore, cyclic voltammetry (CV) has demonstrated that the as-prepared PNCs can catalyze methanol directly with higher activity than that prepared on PSS/PDDA film, and with better tolerance to poisoning than the commercial E-TEK catalyst. The collagen-polymer matrix can be used as a general reactor to electrodeposit other metal nanostructures.
Resumo:
Catalytic NO decomposition on LaSrMn1-x Ni (x) O4+delta (0 a parts per thousand currency sign x a parts per thousand currency sign 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O-2-TPD and H-2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest Delta T and Delta E values).