117 resultados para COMPETING INTERACTIONS
Resumo:
We investigate solitary excitations in a model of a one-dimensional antiferromagnet including a single-ion anisotropy and a Dzyaloshinsky-Moriya antisymmetric exchange interaction term. We employ the Holstein-Primakoff transformation, the coherent state ansatz and the time variational principle. We obtain two partial differential equations of motion by using the method of multiple scales and applying perturbation theory. By so doing, we show that the motion of the coherent amplitude must satisfy the nonlinear Schrodinger equation. We give the single-soliton solution.
Resumo:
In order to determine the equation of state in the isospin asymmetrical nuclear interactions, we have found the observables for extracting the information of them within the isospin-dependent quantum molecular dynamics in recent years. The several sensitive probes for extracting the information of the in-medium nucleon-nucleon cross section and the symmetry potential have found; meanwhile, their mechanisms are investigated in more details. The main point in this paper gives the summary for above probes and their outlook in the future.
Resumo:
Within the framework of a dinuclear system model, a new master equation is constructed and solved, which includes the relative distance of nuclei as a new dynamical variable in addition to the mass asymmetry variable so that the nucleon transfer, which leads to fusion and the evolution of the relative distance, which leads to quasifission (QF) are treated simultaneously in a consistent way. The QF mass yields and evaporation residual cross sections to produce superheavy nuclei are systematically investigated under this framework. The results fit the experimental data well. It is shown that the Kramers formula gives results of QF, which agree with those by our diffusion treatment, only if the QF barrier is high enough. Otherwise some large discrepancies occur.
Resumo:
The Landau parameters of Skyrme interactions in the spin and spin-isospin channels are studied using various Skyrme effective interactions with and without tensor correlations. We focus on the role of the tensor terms on the spin and spin-isospin instabilities that can occur in nuclear matter above saturation density. We point out that these instabilities are realized in nuclear matter at the critical density of about two times the saturation density for all the adopted parameter sets. The critical density is shown to be very much dependent not only on the choice of the Skyrme parameter set, but also on the inclusion of the tensor terms.
Resumo:
Capillary electrophoresis (CE) has been abundantly used in the study of molecular interactions owing to such advantages as short analysis time, low sample size requirement, high separation efficiency, and flexible applications. The focus of this paper is to 2 review recent studies and advances (mainly from 1998 to now) in biomolecular interactions using CE. Five CE modes: zone migration CE, affinity CE, frontal analysis (FA), Hummel-Dreyer (HD) and vacancy peak (VP) are cited and compared. Quantitative aspects of the thermodynamics and kinetics of biomolecular interaction are reviewed. Several biomolecular binding systems, including protein-protein (polypeptide), protein-DNA (RNA), protein(polypeptide)-carbohydrate, protein-small molecule, DNA-small molecule, small molecule-small molecule, have been well characterized by CE. CE is shown to be a powerful tool for the determination of the binding parameters of various bioaffinity interactions.
Resumo:
Affinity capillary electrochromatography (CEC) with zonal elution method was used to probe the competitive interactions of enantiomers with protein. In this approach, a known concentration of a competing agent is continuously applied to a CEC column with bovine serum albumin (BSA) physically adsorbed on SAX packing while injections of a small amount of analyte are made. The binding sites of solutes on the BSA molecule were determined by the changes in the retention factors of the solutes resulted from the addition of competitive agent. By using D- or L-tryptophan as competitive agents and D-, L-tryptophan and benzoin enantiomers as injected analytes showed that BSA molecule has a primary site to strongly bind L-tryptophan, but D-tryptophan dose not bind at this site; D- and L-tryptophan share a weak binding site on the BSA molecule. Benzoin enantiomers do not share any binding sites with either D- or L-tryptophan. Non-chiral compounds of trichloroacetic acid and n-hexanoic acid were applied as the competitive agents to study the binding of warfarin enantiomers to BSA, it was observed that trichloroacetic acid and n-hexanoic acid had a same binding site for warfarin enantiomers binding to BSA molecule. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.
Resumo:
Molecularly imprinted polymers prepared using acrylamide as the hydrogen bonding functional monomer exhibited good enantiomeric recognition properties in aqueous solutions. Our results indicate that the recognition improved with increased mobile phase water percentage and ionic strength, and was also very much pH dependent upon the ionisation properties of the sample molecules. The results can be interpreted in terms of specific hydrophobic interactions between the enantiomeric species and the recognition sites of imprinted polymers. A study of substrate selectivity showed differences between a pure organic system and a water/organic system as the mobile phases. The hydrophobicity of the test compounds was found to be an important parameter in determining the selectivity.
Resumo:
Current concepts of the role of interspecific interactions in communities have been shaped by a profusion of experimental studies of interspecific competition over the past few decades. Evidence for the importance of positive interactions — facilitations — in community organization and dynamics has accrued to the point where it warrants formal inclusion into community ecology theory, as it has been in evolutionary biology.
Resumo:
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h(-1)) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
Resumo:
The conformation of bovine serum albumin (BSA), as well as its interactions with negatively charged mica surfaces in saline solutions of different pH values, have been studied by small-angle neutron scattering (SANS) and chemical force microscopy (CFM), respectively. A new approach to extract the contribution of elementary interactions from the statistically averaged force-extension curves through self-consistent fitting was proposed and used to understand the effects of pH on the interactions and conformation of BSA in saline solutions. When pH increases, the SANS results reveal that the sizes of BSA molecules increase slightly, while the statistical analysis of the CFM results shows that the averaged pull-off force for the elongation monotonously decreases. The decrease of pull-off force with the increase of pH results from the decrease in the strength of hydrogen bonding and the number of interaction pairs, as well as the slight increase of the strength of van der Waals interaction. When pH approaches the isoelectric point (pI) of BSA, results from both SANS and CFM suggest a loss of long-range interactions in BSA molecules. Our results also suggest that the force-extension curve is mainly contributed by the van der Waals interaction. The combination of SANS and CFM provides new insight to understand the interactions and conformation of BSA molecules
Resumo:
In the present work, a sensitive spectroscopic assay based on surface-enhanced Raman spectroscopy (SERS) using gold nanoparticles as substrates was developed for the rapid detection protein-protein interactions. Detection is achieved by specific binding biotin-modification antibodies with protein-stabilized 30 nm gold nanoparticles, followed by the attachment of avidin-modification Raman-active dyes. As a proof-of-principle experiment, a well-known biomolecular recognition system, IgG with protein A, was chosen to establish this new spectroscopic assay. Highly selective recognition of IgG down to 1 ng/ml in solution has been demonstrated.