190 resultados para CHELATED RUTHENIUM(II) COMPLEX
Resumo:
An electrochemically stable monolayer of tris(2,2'-bipyridyl)ruthenium(II) was obtained for the first time. It was based on the electrostatic attachment of Ru(bpy)(3)(2+) to the benzene sulfonic acid monolayer film, which was covalently bound onto glassy carbon electrode by the electrochemical reduction of diazobenzene sulfonic acid. The surface-confined Ru(bpy)(3)(2+) underwent reversible surface process, and reacted with the coreactant, tripropylamine, to produce electrochemiluminescence. In view of the stability of the electrode, the results strongly suggested that light was emitted from the surface-confined Ru(bpy)(3)(2+), not from the detached Ru(bpy)(3)(2+). The Ru(bpy)(3)(2+) modified electrode was used to the determination of tripropylamine. It showed good linearity in the concentration range from 5 muM to 1 muM with a detection limit of 1 muM (S/N = 4). The good stability of the Ru(bpy)(3)(2+) modified electrode also showed that the benzene sulfonic acid monolayer film prepared can be served as an excellent support to construct multilayers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.
Resumo:
Three new asymmetrical ruthenium (II) complexes: [Ru(phen)(2){phen-NHCO(CH2)(4)Br}](PF6)(2), [Ru(phen)(2){phen-NHCO(CH2)(5)Br}](PF6)(2) and [Ru(phen)(2){phen-NHCO(CH2)(10)Br}](PF6)(2) were synthesized, which were confirmed by the technique of FT-IR, H-1 NMR and ESI-MS. The electrochemical and fluorescent properties of three Ru (II) complexes were investigated with cyclic voltammetry and fluorometry.
Resumo:
The H-1 and C-13 nuclear magnetic resonance(NMR) spectra are reported for bis(2, 2'-bipyridine)(2, 2'-bipyridine-,4,4'-dicarboxylic acid) ruthenium(II) hexafluoruphosphate that has been used as a tagged molecule of electrochemiluminescent immunoassay. Because of the effect of Ru atom on ligands, it is difficult to assign its NMR spectra. BS' means of two dimensional H-1-H-1 COSY and H-1-C-13 COSY techniques, the H-1 and C-13 NMR spectra of bis (2, 2'-bipylidine) (2, 2'-bipyridine-4, 4-dicarboxylic acid) ruthenium(II) hexafluorophosphate are assigned completely. This provides a basis for NMR characterization of the nerv similar tagged molecules.
Resumo:
Four novel screw-like Ru(II) complexes, tris(5-lauramide-1,10-phenanthroline)Ru(II) bishexafluorophosphate, tris(5-myristamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate, tris(5-palmitamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate and tris (5-stearamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate have been efficiently synthesized. They are confirmed by the techniques of IR, H-1 NMR, H-1-H-1 COSY and ES-MS. Also, their electrochemistry, fluorescence and electrochemiluminescence are reported.
Resumo:
The effects of heteropoly acids and Triton X-100 on electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) are investigated. Triton X-100 prevents the oxidation of oxalate and results in an increase of the ECL signal. H5SiW11VO40 prevents the direct oxidation of oxalate and makes the electrochemical behavior of Ru(bpy)(3)(2+) less reversible, which leads to a decrease of the ECL signal. In contrast, H3PMo12O40 has negligible effect on ECL intensity. Some possible reasons for the effects on the ECL of Ru(bpy)(3)(2+) are discussed based on the adsorption of SiW11VO405- on electrode surface and the ion association between SiW11VO405- and Ru(bpy)(3)(2+). The signal of ECL decreases linearly with the concentration of heteropoly acid in the range from 2x10-6 to 1x10(-4) mol l(-1). The results indicate that ECL of RU(bpy)(3)(2+) is a potential sensitive and selective detection method for heteropoly acids and hence for the elements comprised in them.
Resumo:
The binuclear complex [Ni(oxae)Ni(phen)2](ClO4)(2) . H2O (oxae=N,N'bis(2-aminoethyl) oxamido dianion, phen = 1, 10-phenanthroline) was prepared from the planar monomeric complex Ni(oxae) and characterized through analytical and spectroscopic measurements. The structure of [Ni(oxae)Ni(phen)(2)] (ClO4)2 . 3H(2)O was investigated by single-crystal X-ray analysis. The complex has an extended oxamido-bridged structure and consists of two nickel(II) ions, one of them in a square planar environment and another in a distorted octahedral environment. The Ni-Ni distance is 5.267 Angstrom.
Resumo:
The title complex, bis(2,6-di-tert-butyl-4-methyl-phenolato-O)tris(tetrahydrofuran-O)samarium tetrahydrofuran solvate, [Sm(C15H23O)2(C4H8O)3].C4H8O, has distorted trigonal bipyramidal geometry around the Sm(II) atom. The 0(2), 0(3) and 0(4) atoms of the
Resumo:
The reaction of EuCl3, AlCl3 and C6Me6 in toluene gives the Eu(II) complex [Eu(eta-6-C6Me6)(AlCl4)2]4; X-ray crystal determination shows the molecule to be a cyclotetramer, in which the four Eu(C6Me6)AlCl4 units are connected via four groups of eta-2-AlCl4.
Resumo:
The highly pure and active photosystem II (PSII) complex was isolated from Bangia fusco-purpurea (Dillw) Lyngb., an important economic red alga in China, through two steps of sucrose density gradient ultracentrifugation and characterized by the room absorption and fluorescence emission spectra, DCIP (2,6-dichloroindophenol) reduction, and oxygen evolution rates. The PSII complex from B. fusco-purpurea had the characteristic absorption peaks of chlorophyll (Chl) a (436 and 676 nm) and typical fluorescence emission peak at 685 nm (Ex = 436 nm). Moreover, the acquired PSII complex displayed high oxygen evolution (139 mu mol O-2/(mg Chl h) in the presence of 2.5 mM 2,6-dimethybenzoqinone as an artificial acceptor and was active in photoreduction of DCIP (2,6-dichloroindophenol) by DPC (1,5-diphenylcarbazide) at 163 U/(mg Chl a h). SDS-PAGE also suggested that the purified PSII complex contained four intrinsic proteins (D1, D2, CP43, and CP47) and four extrinsic proteins (33-kD protein, 20-kD protein, cyt c-550, and 14-kD protein).
Resumo:
A new kind of solid substrate, a glassy carbon (GC) electrode, was selected to support lipid layer membranes. On the surface of the GC electrode, we made layers of didodecyldimethylammonium bromide (a synthetic lipid). From electrochemical impedance experiments, we demonstrated that the lipid layers on the GC electrode were bilayer lipid membranes. We studied the ion channel behavior of the supported bilayer lipid membrane. In the presence of perchlorate anions as the stimulus and ruthenium(II) complex cations as the marker ions, the lipid membrane channel was open and exhibited distinct channel current. The channel was in a closed state in the absence of perchlorate anions.