338 resultados para Branched Polymer Melts
Resumo:
Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Films of high glass' transition temperature polymer polyetherketone doped with chromophore 2,2'[4-[(5-nitro-2-thiazolyl)azophenyl]-amino]-bisethanol NTAB) were prepared, poled by the corona-onset poling setup which includes a grid voltage making the surface-charge distribution uniform at elevated temperature. The thickness of the films was measured by the Model 2010 Prism Coupler system. Second harmonic generation d(33) was measured by the second harmonic generation method, and the d33 is 38.12 pm/V at 1064 nm under the absorption correction. The nonlinear optical activity maintains is 80% of its initial value. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Films of polyetherketone doped with the chromophores Disperse Red 1 (DR1) and Disperse Red 13 (DR13) were prepared by spin-coating method. By the in situ Second-harmonic Generation (SHG) signal intensity measurement, the optimal poling temperatures were obtained. For the investigated polyetherketone polymer doped with DR1 (DR1/PEK-c) and polyetherketone polymer doped with DR13 (DR13/PEK-c) films, the optimal poling temperatures were 150degreesC and 140degreesC, respectively. Under the optimal poling conditions, the high second-order nonlinear optical coefficient chi(33)((2)) = 11.02 pm/V has been obtained for the DR1/PEK-c; and for DR13/PEK-c at the same conditions the coefficient is 17.9 pm/V. The SHG signal intensity DR1/PEK-c could maintain more than 80% of its initial value when the temperature was under 100degreesC, and the SHG signal intensity of the DR13/PEK-c could maintain more than 80% of its initial value when the temperature was under 135degreesC. (C) 2002 Kluwer Academic Publishers.
Resumo:
In order to optimize the loading of 3-(1, 1-dicyanothenyl)-1-phenyl-4, 5-dihydro-1H-pryazole (DCNP) in polyetherketone (PEK-c) guest-host polymer films, ten kinds of DCNP/PEK-c thin films, in which the weight per cent of DCNP changes from 5 to 50, were prepared. Their second-order nonlinear optical coefficients chi(33)((2)) at 1064 nm were measured by Using Maker fringe method after poling under the optimal poling condition. Their optical waveguide transmission losses were measured at 632.8 nm. Optimal weight per cent of the chromophore for the DCNP/PEK-c guest-host polymer system has been determined as about 20 for use in the integrated optical devices.
Resumo:
The polyetherketone (PEK-c) guest-host polymer films doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The films were poled by corona-onset poling at elevated temperature (COPET). The orientational order parameter of the chromophores NAEC in poled polymer film was determined by measuring the absorption spectra of the films before and after being poled. By using the two-level model, the measured dispersion of the refractive index of the polymer film, and the dispersion of the first hyperpolarizability of chromophore NAEC, the dispersion of the macroscopic second-order nonlinear optical (NLO) and linear electrooptic (EO) coefficients was evaluated for the NAEC/PEK-c guest-host polymer film. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The polyetherketone (PEK-c) guest-host polymer thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. The polymer films were investigated with in situ second-harmonic generation (SHG) measurement. The corona poling temperature was optimized by the temperature dependence of the in situ SHG signal intensity under the poling electric field applying. The temporal and temperature stability of the second-order properties of the poled polymer film were measured by the in situ SHG signal intensity probing. The second-order NLO coefficient chi ((2))(33) = 32.65 pm/V at lambda = 1064 nm was determined by using the Makel fringe method after poling under the optimal poling condition. The dispersion of the NLO coefficient of the guest-host polymer system was determined by the measured value of chi ((2))(33) at 1064 nm and the two-level model.
Resumo:
The polyetherketone (PEK-c) guest-host polymer planar waveguides doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The waveguide films were poled by corona-onset poling at elevated temperature (COPET), and the corona poling setup includes a grid voltage making the surface-charge distribution uniform. By using the prism-in coupling method, the dark-line spectrum given by the reflected intensity versus the angle of incidence have been obtained, and the optical transmission losses of mth modes have been measured for the poled polymer waveguides at lambda = 632.8 nm. The measurement result showed that the optical loss of the fundamental mode is less than 0.7 dB cm(-1) for the TE polarization. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We have prepared the polymer thin films of a 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DChTP)/poly (methyl methacrylate) (PMMA) guest-host system by spin coating. In order to investigate their temporal and temperature stability, we have measured their dielectric relaxation spectra including the frequency dependence of the real and imaginary parts of dielectric constants. The investigated frequency ranged from 50 Hz to 10 MHz. The measured temperature range above the glass transition temperature T-g (95 degrees C) of the DCNP/PMMA system was from 95 degrees C to 1250C. By using the Adam-Gibbs model, the temperature dependence of the characteristic time tau above T-g was fitted, and the values of the characteristic times tau below T-g were estimated. The lifetimes of the polymer were evaluated by the Kohlrausch-Williams Watts (KWW) empirical decay model. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. Their second-order nonlinear optical (NLO) coefficients chi(33)((2)) were measured by using Maker fringe method for the polymer films doped with different weight percents of DCNP. Experimental results indicate that the second-order NLO properties of the poled polymer films could decrease with the chromophore loading increasing when the chromophore loading reaches a fairly high level. In this paper, the relationship between the macroscopic second-order NLO coefficient and the chromophore number density was modified under considering the role of the electrostatic interactions of chromophores in the polymer film. According to the modified relationship, the macroscopic second-order NLO coefficient is no longer in direct proportion with the chromophore number density in the polymer film. The effect of the electrostatic interactions of chromophores on second-order NLO properties was discussed. The attenuation of the macroscopic second-order NLO activity can be demonstrated by the role of the chromophore electrostatic interactions at high loading of chromophore in the polymer systems.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films in which the range of the weight percent of 3-(1,1-dicyanothenyl)-1-phenyl-4, 5- dihydro-1H-pryazole (DCNP) is from 20% to 50% were prepared. The predicted high value of electro-optical (EO) coefficient gamma(33) = 48.8 pm/V by using two-level model was obtained when the weight percent of DCNP in the polymer system is 40%, whereas EO coefficients are attenuated at higher chromophore loading then 40%. The temporal stability of the EO activity of the guest-host polymer was evaluated by probing the decay of the orientational order of the chromophores in the polymer system.
Resumo:
The real-time monitoring of the second-harmonic generation (SHG) was used to optimize the poling condition and to study the nonlinear optical (NLO) properties of the polyetherketone (PEK-c) guest-host polymer films. The high second-order NLO coefficient chi(33)((2)) = 11.02 pm/v measured at 1.064 mu m was achieved when the weight percent of DR1 guest in the polymer system is 20%. The NLO activity of the poled DR1/PEK-c polymer film can maintain more than 80% of its initial value when temperature is under 100 degrees C, and the normalized second-order NLO coefficient can maintain more than 85% after 2400 s at 80 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
By using V-prism refractometer, the refractive indices of a polyetherketone (PEK-c) guest-host polymer system were measured with the polymer in solutions. The Lorenz-Lorentz local field formalism was used in the calculation of the refractive indices of the polymers from the measured indices of the polymer solutions and the pure solvent by using V-prism refractometer. The refractive index dispersions of the polymers were obtained by fitting the measured indices of the polymers to Sellmeyer equation. The method allows for an accuracy in index of 0.7% in the determination of the polymer indices. In addition, a large difference between the indices of the polymer and the solvent, and a higher polymer volume fraction in the measured polymer solution are favorable for a high accuracy. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The simple reflection technique is usually used to measure the linear electro-optic (EO) coefficient (Pockels coefficient) in the development of EO polymer thin films. But there are some problems in some articles in the determination of the phase shift between the s and p light modes of a laser beam waveguided into the polymer film while a modulating voltage is applied across the electrodes, and different expressions for the linear EO coefficient measured have been given in these articles. In our research, more accurate expression of the linear EO coefficient was deduced by suitable considering the phase shift between the s and p light modes. The linear EO coefficients of several polymer thin films were measured by reflection technique, and the results of the Linear EO coefficient calculated by different expressions were compared. The limit of the simple reflection technique for measuring the linear EO coefficient of the polymer thin films was discussed.