54 resultados para Braking in a Turn.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grateloupia turuturu, previously known as Grateloupia doryphora, has been widely reported to be an invasive algal species. There are no studies to relate the impact of its existence on its surrounding environment. In this paper, we present our results to show that about 70% of individuals collected from the field could turn Vibrio parahaemolyticus into non-culturable state on both selective (TCBS) and non-selective (2216E) culture medium in 24 h in the presence of light in live algal culture. Total bacteria counts on TCBS and 2216E plates dropped from the initial 565 (174) and 1192 (60) cfu ml(-1) respectively to zero in 24 h. This effect disappeared when the alga was grown in darkness. The same effect was not found in two other intertidal macroalgae Laminaria japonica and Palmaria palmata. Further tests showed that the settlement ability of bacteria in seawater was impaired significantly in the presence of this alga in comparison with three other algal species. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight sporopollen zones have been divided based on the results of high-resolution sporopollen analysis of Core B10 in the southern Yellow Sea. Based on the results along with C-14 datings and the subbottom profiling data, climatic and environmental changes since the last stage of late Pleistocene are discussed. The main conclusions are drawn as follows: (1) the vegetation evolved in the process of coniferous forest-grassland containing broad-leaved treesconiferous and broad-leaved mixed forest --> coniferous and broad-leaved mixed forest-grassland prevailed by coniferous trees --> coniferous and broad-leaved mixed forest-grassland containing evergreen broad-leaved trees- coniferous and broad-leaved mixed forest-grassland prevailed by broad-leaved trees-deciduous broad-leaved forest-meadow containing evergreen broad-leaved trees- coniferous and broadleaved mixed forest-grassland prevailed by broad-leaved trees- coniferous and broad-leaved mixed forest containing evergreen broad-leaved trees; (2) eight stages of climate changes are identified as the cold and dry stage, the temperate and wet stage, the cold and dry stage, the warm and dry stage, the temperate and wet stage, the hot and dry stage, the temperate and dry stage, then the warm and dry stage in turn; (3) the sedimentary environment developed from land, to littoral zone, to land again, then to shore-neritic zone; and (4) the Yellow Sea Warm Current formed during early-Holocene rather than Atlantic stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15 degrees-18 degrees N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15 degrees N with lowest salinity off shore at 21 degrees N, but mainly hugs the Mindanao coast south of 12 degrees N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10 degrees N at 130 degrees E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated, which show the following results. (1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160 W as its axis and a meridional seesaw pattern with 6-8 degrees N as its transverse axis. The meridional oscillation has a phase lag of about 90 to the zonal oscillation, both oscillations get together to form the El Nino/La Nina cycle, which behaves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12 degrees N. (2) There are two main patterns of wind stress anomalies in the tropical Pacific, of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific, and the abnormal cross- equatorial flow wind stress and its corresponding divergence field, which has a sign opposite to that of the equatorial region, in the off-equator of the tropical North Pacific, and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly. (3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle, which results in the sea level tilting, provides an initial potential energy to the mixed layer water oscillation, and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12 degrees N of the North Pacific basin, therefore determines the amplitude and route for ENSO cycle. The ITCZ anomaly has some effects on the phase transition. (4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific, which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillation, which in turn intensifies the oscillation. The coupled system of ocean-atmosphere interactions and the inertia gravity of the mixed layer water oscillation provide together a phase-switching mechanism and interannual memory for the ENSO cycle. In conclusion, the ENSO cycle essentially is an inertial oscillation of the mixed layer water induced by both the trade winds anomaly and the coupled ocean-atmosphere interaction in the tropical Pacific basin between the equator and 12 degrees N. When the force produced by the coupled ocean-atmosphere interaction is larger than or equal to the resistance caused by the mixed layer water oscillation, the oscillation will be stronger or maintain as it is, while when the force is less than the resistance, the oscillation will be weaker, even break.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (< 2 mu m), nanophytoplankton (2-20 mu m), and microphytoplankton (> 20 mu m) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13-3.43 and 0.09-1.92 d(-1) for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 mu g C 1(-1) d(-1) at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The source and significance. of two mitrients, nitrogen. and phosphorous, were investigated by a modified dilution method performed on seawater samples from the Jiaozhou Bay in autumn 2004. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the external nutrient pools, as well as nutrient supplied through remineralization by microzooplankton. The results indicated that the phytoplankton net growth rate increased in turn from inside the bay, to outside the bay, to in the Xiaogang Harbor. The phytoplankton, maximum growth rates and microzooplankton grazing mortality rates were 1.14 and 0.92 d(-1) outside the bay, 0.42 and 0.32 d(-1) inside the bay and 0.98 and 0.62 d(-1) in the harbor respectively. Outside the bay, the remineralized nitrogen (K-r = 24.49) had heavy influence on the growth of the phytoplankton. Inside the bay, the remineralized phosphorus(K-r = 3.49) strongly affected the phytoplankton growth. In the harbor, the remineralized phosphorus (K-r = 3.73) was in larger demand by phytoplankton growth. The results demonstrated that the different nutrients pools supplied for phytoplankton growth were greatly in accordance with the phytoplankton community structure, microzooplankton grazing mortality rates and environmental conditions. It is revealed that, nutrient remineralization is much more important for the phytoplankton growth in the Jiaozhou Bay than previously believed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q(10)) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q(10) decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m(-2). Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The silver catalyzed, selective catalytic reduction (SCR) of nitrogen oxides (NOx) by CH4, is shown to be a structure-sensitive reaction. Pretreatment has a great affect on the catalytic performances. Upon thermal treatment in inert gas stream, thermal induced changes in silver morphology lead to the formation of reduced silver species of clusters and particles. Catalysis over this catalyst indicates an initially higher activity but lower selectivity for the CH4-SCR of NOx Reaction induced restructuring of silver results in the formation of ill-defined silver oxides. This, in turn, impacts the adsorption properties and diffusivity of oxygen over silver catalyst, results in the decrease in activity but increase in selectivity of Ag-H-ZSM-5 catalyst for the CH4-SCR of NO.. (c) 2004 Elsevier B.V. All rights reserved.