86 resultados para Bond cycles
Resumo:
A facile and efficient synthetic route towards; highly substituted isothiazol-3(2H)-ones 2 from readily available U.-carbamoyl ketene-S,S-acetals 1 is presented. The key step features the formation of an N-acylnitrenium ion, generated from the oxidization of substituted amides with the hypervalent iodine reagent phenyliodine(III) bis(trifluoroacetate) (PIFA), and its succeeding intramolecular amidation to form a new N-S bond affording the title compounds.
Resumo:
The influence of the Mn-O-Mn bond angle on the magnetic and electronic properties of YBaMn2O5 was studied by density functional theory, which was implemented in the CASTEP code. In practical calculation, both G- and A-type antiferromagnetic (AFM) orderings were considered. The calculated results indicated that G-type is more stable than A-type, in agreement with both experiment and previous theoretical study. It is also interesting to note that a transition from G-type to A-type at an Mn-O-Mn angle of ca. 170 degrees was found upon increasing Mn-O-Mn angle. Therefore, the calculation suggested that what is essential to stabilize the G-type AFM state is the reduction of the Mn-O-Mn bond angle. For both magnetic orderings, the compound changes from semiconductor to metal with the increase of Mn-O-Mn angle.
Resumo:
The covalency of each bond in divalent europium doped hosts CaSiO3, SrSiO3, BaSiO3, Sr2LiSiO4F, Ba5SiO4Cl6 and Ba5SiO4Br6 were calculated by using the complicate crystal chemical bond theory. The relationship between the Stokes shift and the bond properties of Eu2+ in these crystals was discussed. The result demonstrates that, in the isostructural crystals that being doped with Eu2+, there is a more precise connection between the magnitude of Stokes shift and the mean covalency of the dopant site.
Resumo:
By using the average band-gap model, the chemical bond properties of (La1-x, M-x)(2)CuO4(M=Ba, Sr) were calculated. The calculated covalencies for Cu-O and La-O bond in the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of Fe-57 doped in La2CuO4 and Sn-119 doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in Fe-57 and Sn-119 doped La2CuO4.
Resumo:
By using the chemical bond theory of complex crystals, the chemical bond properties of REBa2Cu3O7 (RE = Eu, Y) were calculated. The calculated covalencies for Cu(1)-O and Cu(2)-O bond in REBa2Cu3O7 compounds are 0.41 and 0.28 respectively. Mossbauer isomer shifts of Fe-57 doped, and Sn-119 doped in REBa2Cu3O7-x were calculated by using the chemical environmental factor, h(e), defined by covalency and electronic polarizability. Four valence state tin ion and iron ion sites were identified in Fe-57 and Sn-119 doped REBa2Cu3O7-x superconductors.
Resumo:
Bond covalency and valence of elements in HgBa2Can-1CunO2n+2+delta (n = 1, 2, 3, 4) were calculated and their relationship with T-c was discussed. For both oxygen and argon annealed samples, the results indicated that with the increase of n, the trend of bond covalency of Hg-O and Cu-O was the same or opposite compared with that of superconducting temperature. This may suggest that the magnitudes of Cu-O and Hg-O bond covalency are important in governing the superconducting temperature. For the highest T-c sample, Hg had the lowest valence, implying that lower valence of Hg was preferred in order to produce higher T-c. For fixed n, the valence of Cu in oxygen annealed samples was larger than that in argon annealed samples, indicating that oxygen annealed samples produced more carriers than argon annealed samples.
Resumo:
Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr(3)MrhO(6) (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.
Resumo:
By using the average bond-gap model, the chemical bond properties of REBa2Cu3O7 were calculated. The calculated covalencies for Cu(1)-O and Cu(2)-O bonds in REBa2Cu3O7 compounds are 0.41 and 0.28 respectively. Mossbauer isomer shifts of Fe-57 doped in EuBa2Cu3O7-x and Sn-119 doped in YBa2Cu3O7-x were calculated by using the chemical surrounding factor, h, defined by covalency and electronic polarizability. The valence states and sites of Fe-57 in EuBa2Cu3O7 and Sn-119 in YBa2Cu3O7-x were identified.
Resumo:
Chemical bond parameters in RBa2Cu4O8(R = Dy, Ho, Er, Tm, Yb) and Y2Ba4Cu7O14.3 were calculated by using complex chemical bond theory. The results indicated that the bond covalency in CuO chain was larger than that in CuO2 plane. For metal atoms, the bond covalency of five coordinated case was larger than that of six coordinated case.
Resumo:
The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd, Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of the dielectric description theory of Phillips, Van Vechten, Levine and Tanaka scheme. The results indicate that larger valences usually result in higher bond covalencies, in good agreement with the point that the excess charge in the bonding region is the origin of formation of bond covalency. Other factors, such as oxidation state of elements, only make a small contribution to bond covalency.
Resumo:
Bond covalencies in R2BaCuO5 (R = Sm, Gd, Dy, Ho, Y, Er, Tm, Yb, Lu) were calculated by means of a semiempirical method. This method is the generalization of the dielectric description theory of Phillips-Van Vechten-Levine-Tanaka scheme. The present paper presents the formula concerning the decomposing of complex crystals which are usually anisotropic systems into the sum of binary crystals which are isotropic systems. It can be seen that although the bond covalency is related to many physical quantities, it is mainly influenced by bond valence or bond charge, and a higher bond valence will produce higher bond covalency.
Resumo:
We report a semiempirical method for the evaluation of bond covalency in complex crystals. This method is the extension of the dielectric description theory delivered by Phillips, Van Vechten, Levine, and Tanaka (PVLT) which is mainly suitable for binary crystals. Our method offers the advantage of applicability to a broad class of complex materials. The simplicity of the approach allows a broader class of researchers to access the method easily and to calculate not only the bond covalency but also other useful. properties such as bulk modulus. For a series study, a useful trend can be illustrated and often the prediction of the properties of the-missing one(s) among the series can be possible. Finally, examples are given to show how the method is applied and the procedure is transferable to other complex crystals.
Resumo:
The chemical bond parameters, that is, bond covalency, bond susceptibility, and macroscopic linear susceptibility of La1-xCaxCrO3 (x = 0.0, 0.1, 0.2, 0.3) has been calculated using a semiempirical method. This method is the generalization of the dielectric description theory proposed by Phillips, Van Vechten, Levine, and Tanaka (PVLT). In the calculation of bond valence, two schemes were adopted. One is the bond valence sums (BVS) scheme, and the other is the equal-valence scheme. Both schemes suggest that for the title compounds bond covalency and bond susceptibility are mainly influenced by bond valence and are insensitive to the Ca doping level or structural change. Larger bond valences usually result in higher bond covalency and bond susceptibility. The macroscopic linear susceptibility increases (only slightly for BVS scheme) with the increasing Ca doping level. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The influence of bond valence on bond covalency in La1-xCaxCrO3(x =0.0, 0.1, 0.2, 0.3) has been studied by using semiempirical method. This method is the extension of the dielectric description theory proposed by Phillips, Van Vechten, levine and Tanaka (PVLT). In the calculation of bond valence, two schemes were adopted. The first is the equal-valence scheme, and the second is Bond Valence Sums (BVS) scheme. Both schemes suggest that for the title compound bond covalency be mainly influenced by bond valence, and insensitive to the Ca doping level. Generally speaking, larger bond valences usually result in higher bond covalencies.
Resumo:
Formulas for decomposing of complex crystals to a sum of binary crystals are described and applied to the study of bond covalency in La1-xSrxFeO3 (0.0 less than or equal to x less than or equal to 0.9) and Ca1-xSrxMnO3 (0.0 less than or equal to x less than or equal to 0.5). The bond valence is treated by bond-valence sums scheme. The results indicate that, for both compounds, with the increasing doping level, the bond covalency and bond valence show the same trend, namely, larger bond covalency corresponds to higher bond valence. For La1-xSrxFeO3, with the increase of doping level, the bond covalency of La-O, Ca-O decreases in the orthorhombic (0.0 less than or equal to x less than or equal to 0.2) and rhombohedral (0.4 less than or equal to x less than or equal to 0.7) systems, then increases slightly for the cubic (0.8 less than or equal to x less than or equal to 0.9) system, but that of Fe-O increases for all crystal systems. A sharp decrease in bond covalency was observed where the crystal changes from orthorhombic to rhombohedral, while a smooth trend was seen for the rhombohedral-to-cubic transition. On the other hand, for orthorhombic Ca1-xSrxMnO3, the bond covalency of Ca-O, Sr-O, and Mn-O (4-coordinate site) decreases with the increasing doping level, that of Mn-O (2-coordinate site) increases.