91 resultados para Biological specimens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high cycle and Very-High-Cycle Fatigue (VHCF) properties of a structural steel with smooth and notched specimens were studied by employing a rotary bending machine with frequency of 52.5 Hz. For smooth specimens, VHCF failure did occur at fatigue cycles of 7.1 x 10(8) with the related S-N curve of stepwise tendency. Scanning Electron Microscopy (SEM) was used for the observations of the fracture surfaces It shows that for smooth specimens the crack origination is surface mode in the failure regime of less than 10(7) cycles While at VHCF regime, the material failed from the nonmetallic inclusion lies in the interior of material, leading to the formation of fisheye pattern. The dimensions of crack initiation region were measured and discussed with respect to the number of cycles to failure. The mechanism analysis by means of low temperature fracture technique shows that the nonmetallic inclusion in the interior of specimen tends to debond from surrounding matrix and form a crack. The crack propagates and results to the final failure. The stress intensity factor and fatigue strength were calculated to investigate the crack initiation properties. VHCF study on the notched specimens shows that the obtained S-N curve decreases continuously. SEM analysis reveals that multiple crack origins are dominant on specimen surface and that fatigue crack tends to initiate from the surface of the specimen. Based on the fatigue tests and observations, a model of crack initiation was used to describe the transition of fatigue initiation site from subsurface to surface for smooth and notched specimens. The model reveals the influences of load, grain size, inclusion size and surface notch on the crack initiation transition. (C) 2010 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/mu m and 13.7 keV/mu m were determined in this study. The clonogenic survival and premature terminal differentiation were measured on normal human. broblasts AG01522C and NHDF after exposure of the cells to 250 kV X-rays and carbon ions with different qualities. RBE was determined for these two biological end points. The results showed that the measured RBE10 with a survival fraction of 10% was 3.2 for LET 172 keV/mu m, and 1.33 for LET 13.7 keV/mu m carbon ions. RBE for a doubling of post-mitotic. broblasts (PMF) in the population was 2.8 for LET 172 keV/mu m, and 1 for LET 13.7 keV/mu m carbon ions. For the carbon ion therapy, a high RBE value on the Bragg peak results in a high biological dose on the tumour. The tumour cells can be killed effectively. At the same time, the dose on healthy tissue would be reduced accordingly. This will lighten the late effect such as fibrosis on normal tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explore the potential of double irradiation source, radioactive C-9-ion beam, in tumor therapy, a comparative study oil the surviving effect of human salivary gland cells at different penetration depths between C-9 and C-12-ion beams has been carried out. The 9C-ion C beam, especially at the distal side of the beam came out more efficient in cell killing at the depths around its Bragg peak than the 12 Bragg peak. Compared to the C-12 beam, an increase in RBE by a factor of up to 2.13 has been observed at the depths distal to the Bragg peak of the 9C beam. The 9C beam showed an enhanced biological effect at the penetration depths around its Bragg peak, corresponding to the stopping region of the incident C-9-ions and where the delayed low-energy particles were emitted. Further analysis revealed that cell lethality by the emitted particles from the stopping C-9-ions is responsible for the excessive biological effect at the penetration depths around the Bragg peak of the C-9 beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A marine green alga, Platymonas subcordiformis, was demonstrated to photobiologically evolve hydrogen (H-2) after the first stage of photosynthesis, when subjected to a two-phase incubation protocol in a second stage of H2 production: anaerobic incubation in the dark followed by the exposure to light illumination. The anaerobic incubation induced hydrogenase activity to catalyse H? evolution in the following phase of light illumination. H,) evolution strongly depended upon the duration of anaerobic incubation, deprivation of sulphur (S) from the medium and the medium pH. An optimal anaerobic incubation period of 32 h gave the maximum H2 evolution in the second phase in the absence of sulphur. Evolution of H,) was greatly enhanced by 13 times when S was deprived from the medium. This result suggests that S plays a critical role in the mediation of H-2 evolution from R subcordiformis. A 14-fold increase in H-2 production was obtained when the medium pH increased from 5 to 8; with a sharp decline at pH above eight. H-2 evolution was enhanced by 30-50% when supplementing the optimal concentrations of 25 mM acetate and 37.5 mM glucose. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-formamidine complex have been investigated employing the B3LYP/6-311++G** level of theory. Computational results suggest that the participation of a formamidine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one since no zwitterionic complexes have been located during the DPT process. The barrier heights are 14.4 and 3.9 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.1 and 2.9 kcal/mol to 11.3 and 1.0 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the lower reverse barrier height implies that the reverse reaction should proceed easily at any temperature of biological importance. Additionally, the one-electron oxidation process for the double H-bonded glycinamide-formamidine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycinamide fragment and a proton has been transferred from glycinamide to formamidine fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral double H-bonded complex have been determined to be about 8.46 and 7.73 eV, respectively, where both of them have been reduced by about 0.79 and 0.87 eV relative to those of isolated glycinamide due to the formation of the intermolecular H-bond with formamidine. Finally, the differences between model system and adenine-thymine base pair have been discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcoleus vaginatus Gom., the dominant species in biological soil crusts (BSCs) in desert regions, plays a significant role in maintaining the BSC structure and function. The BSC quality is commonly assessed by the chlorophyll a content, thickness, and compressive strength. Here, we have studied the effect of different proportions of M. vaginatus, collected from the Gurbantunggut Desert in northwestern China, on the BSC structure and function under laboratory conditions. We found that when M. vaginatus was absent in the BSC, the BSC coverage, quantified by the percentage of BSC area to total land surface area, was low with a chlorophyll a content of 4.77 x 10(-2) mg g(-1) dry soil, a thickness of 0.86 mm, and a compressive strength of 12.21 Pa. By increasing the percentage of M. vaginatus in the BSC, the BSC coverage, chlorophyll a content, crust thickness, and compressive strength all significantly increased (P < 0.01). The maximum chlorophyll a content (13.12 mg g(-1)dry soil), the highest crust thickness, and the compressive strength (1.48 mm and 36.60 Pa, respectively) occurred when the percentage of inoculated M. vaginatus reached 80% with a complex network of filaments under scanning electron microscope. The BSC quality indicated by the above variables, however, declined when the BSC was composed of pure M. vaginatus (monoculture). In addition, we found that secretion of filaments and polymer, which stick sands together in the BSC, increased remarkably with the increase of the dominant species until the percentage of M. vaginatus reached 80%. Our results suggest that not only the dominant species but also the accompanying taxa are critical for maintaining the structure and functions of the BSC and thus the stability of the BSC ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.