80 resultados para Bed dip
Combined Coal Gasification and Methane Reforming for Production of Syngas in a Fluidized Bed Reactor
Resumo:
This paper considers the lift forces acting on a pipeline with a small gap between the pipeline and the plane bottom or scoring bottom. A more reasonable fluid force on the pipeline has been obtained by applying the knowledge of modified potential theory (MPT), which includes the influences of the downstream wake. By finite element method, an iteration procedure is used to solve problems of the nonlinear fluid-structure interaction. Comparing the deflection and the stress distributions with the difference sea bottoms, the failure patterns of a spanning pipeline have been discussed. The results are essential for engineers to assess pipeline stability.
Resumo:
Sand storm is a serious environmental threat to humans. Sand particles are transported by saltation and suspension, causing soil erosion in one place and deposition in another. In order to prevent and predict sand storms, the causes and the manners of particle motions must be studied in detail. In this paper a standard k-epsilon model is used for the gas phase simulation and the discrete element method (DEM) is used to predict the movements of particles using an in-house procedure. The data are summarized in an Eulerian-Eulerian regime after simulation to get the statistical particle Reynolds stress and particle collision stress. The results show that for the current case the Reynolds stress and the air shear stress predominate in the region 20-250 mm above the initial sand bed surface. However, in the region below 3 mm, the collision stress must be taken into account in predicting particle movement. (C) 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Resumo:
In this study. Nafion (R) 117 membrane is surface-modified with mesoporous silica layers through in situ surfactant-templated sol-gel reaction. The reaction makes use of tetraethyl orthosilicate (TEOS) under acidic condition via dip-coating technique on both sides. Scanning electron microscopy (SEM), Fourier transformation infrared (FTIR), and thermogravimetric analysis (TGA) are employed to characterize the resultant membranes. Proton conductivity and methanol permeability of the membranes are also studied.