168 resultados para Avicenna--980-1037


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The up-conversion properties of Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation were investigated. Intense blue up-conversion luminescence due to the Tm3+: (1)G(4) -> H-3(6) transition was observed in the glass-ceramics. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The up-conversion mechanism is proposed. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics and the concentrations dependence of upconversion luminescence are also discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upconversion properties of Er3+/Yb3+ codoped tellurite glasses and glass fibers with D-shape cladding under 980 mu excitation were investigated. Intense emission bands centered at 531, 546 and 658 nm corresponding to the transitions Er3+: H-2(11/2) -> I-4(15/2) , S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. Compared with that in Er3+/Yb3+ codoped tellurite bulk glass, the upconversion luminescence becomes more efficient in the fiber geometry. The dependence of upconversion intensities on fiber geometry and possible upconversion mechanism are discussed and evaluated. The presented Er3+/Yb3+ codoped tellurite fibers with intense upconversion luminescence can be used as potential host materials for upconversion fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tellurite glass is proposed as a host for broadband erbium-doped fiber amplifiers because of their excellent optical and chemical properties. A new single mode Er3+/Yb3+ codoped tellurite fiber with D-shape cladding geometry is fabricated in this work. When pumped at 980 nm, a broad erbium amplified spontaneous emission (ASE) nearly 100 nm in the wavelength range of 1450-1650 ran around 1.53 mu m is observed. It was found that the emission spectrum from erbium in tellurite glass fibers is almost twice as broad as the corresponding spectrum in tellurite bulk glass. The changes in ASE with regard to fiber lengths and pumping power were measured and discussed. The output of about 2.3 mW from Er3+/Yb3+ codoped tellurite fiber ASE source is obtained under the pump power of 700 mW. The broad 1.53 mu m emission of Er3+ in Er3+/Yb3+ codoped tellurite glass fiber can be used as host material for potential broadband optical amplifier and tunable fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649nm corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4) of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3% = 3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tellurite glass is proposed as a host for broadband erbium-doped fiber amplifiers because of their excellent optical and chemical properties. A single-mode Er3+-doped tellurite glass fiber with D-shape cladding was fabricated in this work. The characterization of amplified spontaneous emission (ASE) from this newly fabricated Er3+-doped tellurite fibers are exhibited. When pumped at 980 nm, a very broad erbium ASE nearly 150 nm around 1.53 mum is observed. The changes in ASE with regard to fiber lengths and pumping power were measured and discussed. The output of 2 mW from Er3+-doped tellurite fiber ASE source was obtained under the pump power of 660 mW. The broad 1.53 mum emission of Er3+ in tellurite glass fiber can be used as host material for potential broadband optical amplifier and tunable fiber lasers. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yb-Bi codoped phosphate glass was prepared and its properties were compared with Bi-doped phosphate glass. The broadband infrared luminescence intensity from Yb-Bi codoped glass was similar to 32 times stronger than that of Bi-doped glass. The single-pass optical amplification was measured on a traditional two-wave mixing configuration. No optical amplification was observed in Bi-doped glass, while apparent broadband optical amplification between 1272 and 1336 nm was observed from Yb-Bi codoped glass with 980 nm laser diode excitation. The highest gain coefficient at 1272 nm of Yb-Bi codoped glass reached to 2.62 cm(-1). Yb-Bi codoped phosphate glass is a promising material for broadband optical amplification. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absorption and luminescence spectra and optical amplification in bismuth-doped germanate silicate glass were investigated. Two kinds of bismuth ion valence states could exist in the glass. One is Bi2+, which has shown red luminescence, another might be Bi+, which is the active center for infrared luminescence. The infrared luminescence excited at 700, 800, and 980 nm should be ascribed to the electronic transition P-3(1) --> P-3(0) of Bi+ ions in three distinct sites. The shifting, broadening, and multiple configuration of the luminescence could be due to the randomly disorder of local environment and multiple sites of the active centers. In this glass, obvious optical amplification was realized at 1300 nm wavelength when excited at 808 and 980 nm, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics were fabricated. The precipitated nanocrystal phase in the glass ceramics was identified by X-ray diffraction and transmission electron microscope. Broadband near-infrared emission centered at 1220 nm with full width at half maximum of about 240 nm and lifetime of about 250 mu s was observed with 980 nm excitation. The longer wavelength emission compared with Ni2+-doped MgAl2O4 crystal was attributed to the low crystal field occupied by Ni2+ in the glass ceramics. The present Ni2+-doped transparent glass ceramics may have potential applications in broadband optical amplifiers. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NaYF4: 0.02Er center dot xYb-PVP composite nanofibers with the diameter of similar to 400 nm have been prepared by electrospinning. Field emission scanning electron microscope and X-ray diffraction have been utilized to characterize morphology and structure of the as-prepared electrospun nanofibers. Their up-conversion luminescence is investigated under a 980-nm excitation. Green (538 and 520 nm), red (6-55 nm), and blue (405 nm) emissions are observed in the up-conversion luminescence spectra, and the intensity of these three emissions changes differently with the variety of Yb content, which has been interpreted successfully in this letter. The color of NaYF4: 0.02Er center dot xYb-PVP nanolibers under a 980-nm excitation can be changed from green --> white --> yellow gradually via changing the Yb content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Up-converting phosphor technology (UPT)-based lateral-flow immunoassay has been developed for quantitative detection of Yersinia pestis rapidly and specifically. In this assay, 400 nm up-converting phosphor particles were used as the reporter. A sandwich immumoassay was employed by using a polyclonal antibody against F1 antigen of Y. pestis immobilized on the nitrocellulose membrane and the same antibody conjugated to the UPT particles. The signal detection of the strips was performed by the UPT-based biosensor that could provide a 980 nm IR laser to excite the phosphor particles, then collect the visible luminescence emitted by the UPT particles and finally convert it to the voltage as a signal. V-T and V-c stand for the multiplied voltage units for the test and the control line, respectively, and the ratio V-T/V-C is directly proportional to the number of Y pestis in a sample. We observed a good linearity between the ratio and log CFU/ml of Y pestis above the detection limit, which was approximately 10(4) CFU/mI. The precision of the intra- and inter-assay was below 15% (coefficient of variation, CV). Cross-reactivity with related Gram-negative enteric bacteria was not found. The UPT-LF immunoassay system presented here takes less than 30 min to perform from the sample treatment to the data analysis. The current paper includes only preliminary data concerning the biomedical aspects of the assay, but is more concentrated on the technical details of establishing a rapid manual assay using a state-of-the-art label chemistry. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, a high optical quality 10 at.% Yb3+-doped gadolinium oxyorthosilicate laser crystal Gd2SiO5 (GSO) was grown by the Czochralski (Cz) method. The segregation coefficient of Yb3+ was studied by the inductively coupled plasma atomic emission spectrometer (ICP-AES) method. The crystal structure has monoclinic symmetry with space group P2(1)/c; this was determined by means of an x-ray diffraction analysis. The absorption spectra, fluorescence spectra and fluorescence decay curves of Yb3+ ions in a GSO crystal at room temperature were also studied. Then, the spectroscopic parameters of Yb:GSO were calculated. The advantages of the Yb:GSO crystal include high crystal quality, quasi-four-level laser operating scheme, high absorption cross-sections and particularly broad emission bandwidth (similar to 72 nm). The results indicated that the Yb:GSO crystal seemed to be a very promising laser gain medium in diode-pumped femtosecond laser and tunable solid state laser applications when LD pumped at 940 and 980 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, a high optical quality Yb3+-doped lutetium pyrosilicate laser crystal Lu2Si2O7 (LPS) was grown by the Czochralski (Cz) method. The segregation coefficient of ytterbium ion in Yb:LPS crystal detected by the inductively coupled plasma atomic emission spectrometer (TCP-AES) method is equal to 0.847. X-ray powder diffraction result confirms the C2/m phase monoclinic space group of the grown crystal and the peaks corresponding to different phases were indexed. The absorption and fluorescence spectra, as well as fluorescence decay lifetime of Yb3+ ion in LPS have been investigated. The absorption and fluorescence cross-sections of the transitions F-2(7/2) <-> F-2(5/2) of Yb3+ ion in LPS crystal have been determined. The advantages of the Yb:LPS crystal including high crystal quality, quasi-four-level laser operating scheme, high absorption cross-sections (1.33 x 10(-2) cm(2)) and particularly broad emission bandwidth (similar to 62 nm) indicated that the Yb:LPS crystal seemed to be a promising candidate used as compact, efficient thin chip lasers when LD is pumped at 940 and 980 nm due to its low-symmetry monoclinic structure and single crystallographic site. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, a quaternary doping system of Er3+, Yb3+, Ce3+, Na+:CaF2 single crystal was demonstrated to have high fluorescence yield in the eye-safe 1.5 mu m region under 980 nm laser diode pumping, with relatively broad and flat gain curves. A simplified model was established to illustrate the effect of Ce3+ on the branching ratio for the Er3+4I11/2 -> I-4(13/2) transition. With 0.2-at.% Er3+ and 2.0-at.% Ce3+ in the quaternary-doped CaF2 crystal, the branching ratio was estimated to be improved more than 40 times by the deactivating effect of Ce3+ on the Er3+ 4I11/2 level. The quaternary-doped CaF2, system shows great potential to achieve high laser performance in the 1.5 mu m region. (c) 2006 Elsevier B.V. All rights reserved.