70 resultados para Auto-supressão por transferência de electrão
Resumo:
For an olfactory sensor or electronic nose the task is not only to detect the object concentration, but also to recognize it. It is well known that all the elements can be identified by their charge to mass ratio e+/m. We tried to use this principle for molecular recognition. Two kinds of sensors are used simultaneously in testing. One is Quartz Crystal Microbalance (QCM) for detecting the change in mass, the other is Interdigital Electrode (IE) for detecting the change in conduction. In this paper the principle and the feasibility of this method are reported. The preliminary results on the recognition of alcohols are presented. The multisensor can be used as an instrument for research on material properties and kinetic process as well.
Resumo:
For an olfactory sensor or electronic nose, the task is not only to detect the object concentration, but also to recognize it. It is well known that all the elements can be identified by their charge to mass ratio e(+)/m. We tried to imitate this principle for molecular recognition. Two kinds of sensors are used simultaneously in testing. One is quartz crystal microbalance (QCM) for detecting the change in mass, the other is interdigital electrode (IE) for detecting the change in conduction, as an electro-mass multi-sensor (EMMS). in this paper, the principle and the feasibility of this method are discussed. The preliminary results on the recognition of alcohol by EMMS coated with lipids are presented. Meanwhile, the multi-sensor can also be used as an instrument for research on some physico-chemistry problems. The change in conduction of coated membrane caused by one absorbed molecule is reported. It is found that when a QCM is coated with membrane, it still obeys the relationship Delta F (frequency change of QCM) = K Delta m (mass change of absorbed substance) and the proportional coefficient, K, depends not only on quartz properties but also on membrane characteristics as well. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Dynamic wetting and electrowetting are explored using molecular dynamics simulations. The propagation of the precursor film (PF) is fast and obeys the power law with respect to time. Against the former studies, we find the PF is no slip and solidlike. As an important application of the PF, the electro-elasto-capillarity, which is a good candidate for drug delivery at the micro- or nanoscale, is simulated and realized for the first time. Our findings may be one of the answers to the Huh-Scriven paradox and expand our knowledge of dynamic wetting and electrowetting.
Resumo:
<正>Elasto-capillarity has drawn much of scientists' attention in the past several years.By inducing electric field into the droplet,the encapsulation and release procedure can be realized and we call it electro-elasto-capillarity(EEC).EEC offers a novel method for micro-scale actuation and self-assemble of moveable devices.It also provides a good candidate for the drug delivery at micro- or nanoscale.
Resumo:
Pt3Sn/C catalyst was prepared by a modified polyol process and treated in air, H-2/Ar, and Ar atmosphere, respectively. XRD analyses indicate that all of these catalysts have face-centered cubic (fcc) crystal structure. Temperature-programmed reduction (TPR) experiments show that more Sn exists in zero-valence in the Ar-treated PtSn catalyst than in the others. Cyclic voltammetry (CV), chronoamperometry (CA) experiments, and the performance tests of direct ethanol fuel cell (DEFC) indicate that the catalytic activity of PtSn/C for ethanol oxidation was affected significantly by the chemical state of Sn in catalyst particles. The as-prepared PtSn/C gives the higher power density, while Ar-treated PtSn/C shows the lower cell performance. It seems that the multivalence Sn rather than the zero-valence Sn in the PtSn catalyst is the favorable form for ethanol oxidation. Energy dispersion X-ray analysis (EDX) of the PtSn/C-as prepared and PtSn/C (after stability test) shows the active species (platinum, tin, and oxygen) composition changed to a different extent. Further attempt to improve the catalyst stability is needed.
Resumo:
This work reports on the design and performance evaluation of a miniature direct methanol fuel cell(DMFC)integrated with an electro_osmotic(EO)pump for methanol delivery.Electro-osmotic pumps require minimal parasitic power while boasting no moving parts and simple fuel cell integration.Here ,aneletro-osmotic pump is realized from a commercially available porous glass frit.We characterize a custom-fabricated DMFC with a free convection cathode and coupled to an extennal electro-osmotic pump operated at applied potentials of 4.0,7.0,and 10V.Maximum gross power density of our free convection DMFC(operated at 50°)is 55 mW/cm2 using 4.0 mol/L concentration methanol solution supplied by the EO pump.Experimental results show that electro-osmotic pumps can deliver 2.0,4.0 and 8.0mol/L methanol/water mixtures to DMFCs while utilizing ~5.0% of the fuel cell power.Furthermore ,we discuss pertinent design considerations when using electro-osmotic pumps with DMFCs and areas of further study.
Resumo:
In this paper, it was found that the electrocatalytic activity of a Pt electrode for the electro-oxidation of formic acid could be dramatically enhanced with the modification of macrocycle compounds, such as iron-tetrasulfophthalocyanine (FeTSPc). The electro-oxidation of formic acid on a modified Pt electrode with FeTSPc occurs mainly through a direct pathway. A series of macrocycle compounds were also investigated as modifiers and exhibited a promotion effect similar to the Pt electrode.
Resumo:
The mechanism of formic acid electrooxidation on iron tetrasulfophthalocyanine (FeTSPc) modified Pt electrode was investigated with electrochemical methods. It was found that a "third-body" effect of FeTSPc on Pt electrode predominates during the electrooxidation process based on unusual electrochemical results. The modification leads formic acid electrooxidation to take place through a desired direct pathway, in which the mechanism is proposed to be the gradual dehydrogenation of formic acid and the reaction of formate with hydroxyl species.
Resumo:
A simple and rapid synthesis method (denoted as modified impregnation method, MI) for PtRu/CNTs (MI) and PtRu/C (MI) was presented. PtRu/CNTs (MI) and PtRu/C (MI) catalysts were characterized by transmission electron microscopy (TEM) and X-ray diffractometry. It was shown that Pt-Ru particles with small average size (2.7 nm) were uniformly dispersed on carbon supports (carbon nanotubes and carbon black) and displayed the characteristic diffraction peaks of Pt face-centered cubic structure.
Synthesis of Pd/C catalysts with designed lattice constants for the electro-oxidation of formic acid
Resumo:
Pd/C catalysts with designed lattice constants were synthesized for the electro-oxidation of formic acid. By changing the solvents in the preparation procedure, it was demonstrated that the different lattice constants of Pd crystallites could be controlled as desired. The varied lattice constants may be attributed to the difference in the interactions between solvents and PdCl2. it was found that the lattice constant had an obvious effect on the electro-catalytic performance of Pd.
Resumo:
A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH4)(2)PtCl6 and Ru(OH)(3)) on the carbon support before metal reduction: the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method. even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst.
Resumo:
Non-ionic surfactant Triton X-100 was used as a stabilizer to prepare PtRu/C catalysts for methanol oxidation reaction (MOR). The cyclic voltammogram was used to investigate the catalytic activity for MOR of different PtRu/C catalysts. TG-DTA, EDX, XRD, XPS and TEM were Used to characterize the composition, structure and morphology of the as-prepared PtRu/C catalysts. It is found that the heat treatment plays a crucial role in the particles size, particles distribution of the PtRu/C catalysts and the oxidation state of platinum. The results show that 350 degrees C is an optimum heat treatment temperature. The as-synthesized catalyst heat-treated at this temperature exhibits the best catalytic performance for MOR.