102 resultados para Aspirinato of copper


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental sediments and water from shallow, eutrophic Dianchi Lakes were treated in a controlled laboratory microcosm using different chemicals under different anoxic levels. This study revealed that the polyaluminum chloride (PAC) was able to inhibit the phosphorus release and decrease the UV254 value at any anoxic level. When the DO concentrations were between 0.76-0.95 mg(.) L-1, the UV(254)value, total phosphorus (TP), and total dissolved phosphorus (TDP) in the water column were decreased by 71.93%, 87.12% and 64.24% respectively. The UV254, TP, and TDP were also decreased by 72.94%, 70.87% and 50.76% respectively at the levels of 4.56-5.32mg(.)L(-1) of DO concentrations. The treatment effects of TP and TDP in the water column using copper sulfate however were not as efficient as the PAC treatment. The UV254 value was increased with the addition of copper sulfate at every anoxic level tested but the chlorophyll-a (Chl-a) content was decreased rapidly and efficiently by copper sulfate more than the treatment by PAC. When the DO concentrations were 0.76-0.86mg(.)L(-1) and 4.75-5.14mg(.)L(-1), the Chl-a concentrations were decreased by 84.87% and 75.07% respectively through copper sulfate treatment. With additions of PAC and copper sulfate, the phosphorus fractions in sediments were shifted forward to the favorable shapes that have little ability of release. The TP concentrations in sediments were increased after treatment via PAC and copper sulfate. Under anoxic conditions, most of the BD-P (Fe-P) to NaOH-P (Al-P) was converted using the recommended PAC dose in BD-P rich sediment. Similar to the PAC, the copper sulfate also could flocculate the exchange phosphorus from sediment to overlying water. Overall though, the effects of copper sulfate treatment were not better than that of the PAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple one-pot method is developed to prepare size-and shape-controlled copper(I) sulfide (Cu2S) nanocrystals by thermolysis of a mixed solution of copper acetylacetonate, dodecanethiol and oleylamine at a relatively high temperature. The crystal structure, chemical composition and morphology of the as-obtained products are characterized by powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The morphology and size of the Cu2S nanocrystals can be easily controlled by adjusting the reaction parameters. The Cu2S nanocrystals evolve from spherical to disk-like with increasing reaction temperature. The spherical Cu2S nanocrystals have a high tendency to self-assemble into close-packed superlattice structures. The shape of the Cu2S nanodisks changes from cylinder to hexagonal prism with prolonged reaction time, accompanied by the diameter and thickness increasing. More interestingly, the nanodisks are inclined to self-assemble into face-to-face stacking chains with different lengths and orientations. This one-pot approach may extend to synthesis of other metal sulfide nanocrystals with different shapes and sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two copper-organic framework supramolecular assemblies of p-sulfonatocalix[4]arene and 1,10-phenanthroline Cu-2[C12H8N2][C28H20S4O16][H2O](23.5) (1) and Cu-3[C12H8N2](3)[C28H19S4O16]Cl[H2O](17.6) (2) were obtained by pH-dependent synthesis at room temperature. Both structures show ID water-filled channels (rectangular shape in I and triangular in 2) with the solvent-accessible volume occupying 30.8% (1) and 24.2% (2) of the unit-cell volume, respectively. The calixarene molecules in both structures assume analogous cone shapes of C-2 nu symmetry instead of the conventional C-4 nu symmetry. Their connecting to different amounts of copper/phenanthroline cations leads to the formation of different structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A copper-based chemically modified electrode (CME) has been constructed and characterized for flow-through amperometric detection of catechol, resorcinol, and hydroquinone. Novel potential dependence of the detector response was first obtained for these analytes at the Cu CME, where negative peaks together with positive ones were observed in one definite chromatogram using amperometric detection. Its advantages in chromatographic applications were demonstrated. From these observations it is proposed that the detector response was governed by formation of copper complexes with the solutes. A dynamic linear range over two orders of magnitude was obtained, when operating the detector at +0.10 V vs. SCE, from which ng detection limits were achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A copper-based chemically-modified electrode has been constructed and characterized by various experimental parameters in flow-through amperometric detection of carboxylic acids and phenolic acids. Novel hydrodynamic voltamperograms were first obtained in flow-through amperometric detection with the Cu-based CME and subsequently negative and positive peaks were observed in a single chromatogram. This unique and flexible potential dependence could be of great benefit in chromatographic speciation and quantification. These observations suggest that the detector response was governed by the complexation reaction of copper ions with the solutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic copper nanostructures of different morphologies were synthesized by a surfactant-free electrochemical method. Single crystal nature of the nanostructures was revealed from their X-ray diffraction and electron diffraction patterns. Mechanism of dendrite formation was discussed from thermodynamic aspects using the concept of supersaturation. Supersaturation of the copper metal reduced on the surface of the electrode was the crucial factor for the generation of different morphologies. Effects of applied potential, temperature, and the solution concentration on the supersaturation were studied. The NO3- and H2O2 electroreduction ability of the dendritic materials was tested. Use of copper dendrite-modified electrode as NO3- sensor was demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper toxicity is influenced by a variety of environmental factors including dissolved organic matter (DOM). We examined the complexation of copper by fulvic acid (FA), one of the major components of DOM, by measuring the decline in labile copper by anodic stripping voltammetrically (ASV). The data were described using a one-site ligand binding model, with a ligand concentration of 0.19 mu mol site mg(-1) C, and a logK' of 6.2. The model was used to predict labile copper concentration in a bioassay designed to quantify the extent to which Cu-FA complexation affected copper toxicity to the larvae of marine polychaete Hydroides elegans. The toxicity data, when expressed as labile copper concentration causing abnormal development, were independent of FA concentration and could be modeled as a logistic function, with a 48-h EC50 of 58.9 mu g 1(-1). However, when the data were expressed as a function of total copper concentration, the toxicity was dependent on FA concentration, with a 48-h EC50 ranging from 55.6 mu g 1(-1) in the no-FA control to 137.4 mu g 1(-1) in the 20 mg 1(-1) FA treatment. Thus, FA was protective against copper toxicity to the larvae, and such an effect was caused by the reduction in labile copper due to Cu-FA complexation. Our results demonstrate the potential of ASV as a useful tool for predicting metal toxicity to the larvae in coastal environment where DOM plays an important role in complexing metal ions. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted the liquid phase oxidation of toluene with molecular oxygen over heterogeneous catalysts of copper-based binary metal oxides. Among the copper-based binary metal oxides, iron-copper binary oxide (Fe/Cu = 0.3 atomic ratio) was found to be the best catalyst. In the presence of pyridine, overoxidation of benzaldehyde to benzoic acid was partially prevented. As a result, highly selective formation of benzaldehyde (86% selectivity) was observed after 2 h of reaction (7% conversion of toluene) at 463 K and 1.0 MPa of oxygen atmosphere in the presence of pyridine. These catalytic performances were similar or better than those in the gas phase oxidation of toluene at reaction temperatures higher than 473 K and under 0.5-2.5 MPa. It was suggested from competitive adsorption measurements that pyridine could reduce the adsorption of benzaldehyde. At a long reaction time of 4 It, the conversion increased to 25% and benzoic acid became the predominant reaction product (72% selectivity) in the absence of pyridine. The yield of benzoic acid was higher than that in the Snia-Viscosa process, which requires corrosive halogen ions and acidic solvents in the homogeneous reaction media. The catalyst was easily recycled by simple filtration and reusable after washing and drying.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to describe the effect of latent hardening on the macro-plastic behavior of foc-crystal, a new expression for hardening coefficient is proposed in which there are 12 material constants, each having clear physical meaning. And a method of material constant calibration is suggested and used to determine the material constants of copper and aluminum crystal. The simulated load-elongation curves along various crystallographic orientations are comparable with the experimental ones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A free-burning, high-intensity argon arc at atmospheric pressure was modelled during the evaporation of copper from the cathode. The effect of cathode evaporation on the temperature, mass flow, current flow and Cu concentration was studied for the entire plasma region. The copper evaporates from the tip of the cathode with an evaporation rate of 1 mg s-1. The copper vapour in the cathode region has a velocity of 210 m s-1 with a mass concentration of above 90% within 0.5 mm from the arc axis. The vapour passes from the cathode toward the anode with a slight diffusion in the argon plasma. Higher temperatures and current densities were calculated in the core of the arc caused by the cathode evaporation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulation is employed to study the bio-adhesion in F1 ATP molecular motor. Histidine-peptide is widely used as linkage in micro systems because of its strong binding strength to metals. This paper focuses on the adhesion between a synthetic peptide containing 6xHis-tag (Gly-Gly-Lys-Gly-Gly-Lys-Gly-Gly-His-His-His-His-His-His) and metal substrate, which is used to define the position of the F1 ATP molecular motor on the metal substrate. It is shown that the binding strength between histidine and nickel substrate is the strongest, while that of copper is smaller and that of gold substrate is the smallest. From the result of simulation, we find that the stability of adhesion between histidine and the metal substate result of the ringed structure in histidine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A physical model is presented to describe the kinds of static forces responsible for adhesion of nano-scale copper metal particles to silicon surface with a fluid layer. To demonstrate the extent of particle cleaning, Received in revised form equilibrium separation distance (ESD) and net adhesion force (NAF) of a regulated metal particle with different radii (10-300 nm) on the silicon surface in CO2-based cleaning systems under different pressures were simulated. Generally, increasing the pressure of the cleaning system decreased the net adhesion force between spherical copper particle and silicon surface entrapped with medium. For CO2 + isopropanol cleaning system, the equilibrium separation distance exhibited a maximum at temperature 313.15 K in the Equilibrium separation distance regions of pressure space (1.84-8.02 MPa). When the dimension of copper particle was given, for example, High pressure 50 nm radius particles, the net adhesion force decreased and equilibrium separation distance increased with increased pressure in the CO2 + H2O cleaning system at temperature 348.15 K under 2.50-12.67 MPa pressure range. However, the net adhesion force and equilibrium separation distance both decreased with an increase in surfactant concentration at given pressure (27.6 or 27.5 MPa) and temperature (318 or 298 K) for CO2 + H2O with surfactant PFPE COO-NH4+ or DiF(8)-PO4-Na+. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The room-temperature photoluminescence (PL) of copper doped zinc sulfide (ZnS:Cu) nanoparticles were investigated. These ZnS:Cu nanoparticles were synthesized by a facile wet chemical method, with the copper concentration varying from 0 to 2 mol%. By Gaussian fitting, the PL spectrum of the undoped ZnS nanoparticles was deconvoluted into two blue luminescence peaks (centered at 411 nm and 455 nm, respectively), which both can be attributed to the recombination of the defect sates of ZnS. But for the doped samples, a third peak at about 500 nm was also identified. This green luminescence originates from the recombination between the shallow donor level (sulfur vacancy) and the t(2) level of Cu2+. With the increase of the CU2+ concentration, the green emission peak is systematically shifted to longer wavelength. In addition, it was found that the overall photoluminescence intensity is decreased at the Cu2+ concentration of 2%. The concentration quenching of the luminescence may be caused by the formation of CuS compound. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bacteriorhodopsin (BR) films oriented by an electrophoretic method are deposited on a transparent conductive ITO glass. A counterelectrode of copper and gelose gel is used to compose a sandwich-type photodetector with the structure of ITO/BR film/gelose gel/Cu. A single 30-ps laser pulse and a mode-locked pulse train are respectively used to excite the BR photodetector. The ultrafast failing edge and the bipolar response signal are measured by the digital oscilloscope under seven different time ranges. Marquardt nonlinear least squares fitting is used to fit all the experimental data and a good fitting equation is found to describe the kinetic process of the photoelectric signal. Data fitting resolves six exponential components that can be assigned to a seven-step BR photocycle model: BR-->K-->KL-->L-->M-->N-->O-->BR. Comparing tests of the BR photodetector with a 100-ps Si PIN photodiode demonstrates that this type of BIR photocletector has at least 100-ps response time and can also serve as a fast photoelectric switch. (C) 2003 Society of Photo-Optical Instrumentation Engineers.