49 resultados para Antibody microarray
Resumo:
A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (k(cat)/K-m/k(uncat)) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (k(cat)) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.
Resumo:
A thin-layer microdisk array electrode (TLMDAE) was designed for in situ reflectance FTIR spectroelectrochemical studies. A theoretical estimation, cyclic voltammetry, chronoamperometry and in situ IR measurements demonstrate that this novel design of array electrode results in advantages such as reduced ohmic potential drop, small cell constant and facility for diffusional exchange between thin layer and bulk solution. It has been suggested that the enhanced edge diffusion on the TLMDAE leads to a reduced accumulation of species in the thin layer. (C) 1997 Elsevier Science S.A.
Resumo:
A microcarbon array electrode was modified by the placement of a Nafion film containing cobalt tetramethylpyridyl phorphyrin on its surface. This electrode was applied to the analysis of solution glucose when it was further modified by the immobilization of glucose oxidase on the outermost surface of the Nafion by the cross-linking of serum albumin with glutaraldehyde. The concomitant decrease in the concentration of oxygen, as it was consumed in the enzymatic reaction of glucose with glucose oxidase, was determined by either cyclic voltammetry or a double potential step method at the porphyrin-Nafion catalytic electrode. Glucose could be determined in the range of 0.01-4 mM rapidly, without interference from substances such as ascorbate or other saccharides.
Resumo:
We used microarray technology to study differentially expressed genes in white spot syndrome virus (WSSV)-infected shrimp. A total of 3136 cDNA targets, including 1578 unique genes from a cephalothorax cDNA library and 1536 cDNA clones from reverse and forward suppression subtractive hybridization (SSH) libraries of Fenneropenaeus chinensis, plus 14 negative and 8 blank control clones, were spotted onto a 18 x 18 mm area of NH2-modified glass slides. Gene expression patterns in the cephalothorax of shrimp at 6 h after WSSV injection and moribund shrimp naturally infected by WSSV were analyzed. A total of 105 elements on the arrays showed a similar regulation pattern in artificially infected shrimp and naturally infected moribund shrimp; parts of the results were confirmed by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The up-regulated expression of immune-related genes, including heat shock proteins (HSP70 and HSP90), trehalose-phosphate synthase (TPS), ubiquitin C, and so forth, were observed when shrimp were challenged with WSSV. Genes including myosin LC2, ATP synthase A chain, and arginine kinase were found to be down-regulated after WSSV infection. The expression of housekeeping genes such as actin, elongation factor, and tubulin is not stable, and so these genes are not suitable as internal standards for semiquantitative RT-PCR when shrimp are challenged by WSSV. As a substitute, we found that triosephosphate isomerase (TPI) was an ideal candidate of interstandards in this situation.