134 resultados para Analytic solutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical vapor transport studies of GeSe(x)Te1 - x (x = 0.1, 0.2, 0.3, and 0.4) solid solutions demonstrated, that individual, large single crystals of these materials can be grown in closed ampoules. A compositional analysis of the grown crystals revealed, that the mass transport (crystal growth) process under steady-state conditions is pseudo-congruent and controlled by diffusion processes in the source material. From these experiments, the degree of non-stoichiometry (Ge-vacancy concentrations) of GeSe(x)Te1 - x single crystals could be estimated. The effects of the cubic to rhombohedral phase transformation during cooling on the microstructure and morphology of the grown mixed crystals are observed. This work provides the basis for subsequent defect studies and electrical measurements on these crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A four-phase confocal elliptical cylinder model is proposed from which a generalised self-consistent method is developed for predicting the thermal conductivity of coated fibre reinforced composites. The method can account for the influence of the fibre section shape ratio on conductivity, and the physical reasonableness of the model is demonstrated by using the fibre distribution function. An exact solution is obtained for thermal conductivity by applying conformal mapping and Laurent series expansion techniques of the analytic function. The solution to the three-phase confocal elliptical model, which simulates composites with idealised fibre-matrix interfaces, is arrived at as the degenerated case. A comparison with other available micromechanics methods, Hashin and Shtrikman's bounds and experimental data shows that the present method provides convergent and reasonable results for a full range of variations in fibre section shapes and for a complete spectrum of the fibre volume fraction. Numerical results show the dependence of the effective conductivities of composites on the aspect ratio of coated fibres and demonstrate that a coating is effective in enhancing the thermal transport property of a composite. The present solutions are helpful to analysis and design of composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEECAS SKLLQG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental alpha decay energies and half-lives are investigated systematically to extract alpha particle preformation in heavy nuclei. Formulas for the preformation factors are proposed that can be used to guide microscopic studies on preformation factors and perform accurate calculations of the alpha decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on current phi-mapping topological theory, a kind of self-dual equations in Jackiw-Pi model are studied. We first obtain explicit, self-dual solutions that satisfy Liouville equation which contains delta-function. Then we get perfect vortex solutions which reflect the system's internal topological structure, and consequently the quantization of flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodehalogenation of aromatic halides, catalyzed by Pd/C in aqueous solutions, yields arenes in short reaction times at room temperature under normal pressure. The nature of the solvents has an important influence on the reaction rates and the activity of the catalyst. The catalyst shows the highest activity in water. In the hydrodechlorination of 4-chlorohypnone, it was in water that C-Cl bond was easier to be hydrogenated, and in isopropanol that C=O was easier to be hydrogenated. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intra- and intermolecular relaxations of dye molecules are studied after the excitation to the high-lying excited states by a femtosecond laser pulse, using femtosecond time-resolved stimulated emission pumping fluorescence depletion spectroscopy (FS TR SEP FD). The biexponential decays indicate a rapid intramolecular vibrational redistribution (IVR) depopulation followed by a slower process, which was contributed by the energy transfer to the solvents and the solvation of the excited solutes. The time constants of IVR in both oxazine 750 and rhodamine 700 are at the 290-360 fs range, which are insensitive to the characters of solvents. The solvation of the excited solutes and the cooling of the hot solute molecules by collisional energy transfer to the surrounding takes place in the several picoseconds that strongly depend on the properties of solvents. The difference of Lewis basicity and states density of solvents is a possible reason to explain this solvent dependence. The more basic the solvent is, which means the more interaction between the solute and the neighboring solvent shell, the more rapid the intermolecular vibrational excess energy transfer from the solute to the surroundings and the solvation of the solutes are. The higher the states density of the solvent is, the more favorable the energy transfer between the solute and solvent molecules is.