167 resultados para Amino Acid Sequence
Resumo:
An antimicrobial peptide named odorranain-HP was identified from skin secretions of the diskless odorous frog, Odorrana grahami. It is composed of 23 amino acids with an amino acid sequence of GLLRASSVWGRKYYVDLAGCAKA. By BLAST search, odorranain-HP had si
Resumo:
A novel antimicrobial peptide named odorranain-NR was identified from skin secretions of the diskless odorous frog, Odorrana grahami. It is composed of 23 amino acids with an amino acid sequence of GLLSGILGAGKHIVCGLTGCAKA. Odorranain-NR was classified into a novel family of antimicrobial peptide although it shared similarity with amphibian antimicrobial peptide family of nigrocin. Odorranain-NR has an unusual intramolecular disulfide-bridged hexapeptide segment that is different from the intramolecular disulfide-bridged heptapeptide segment at the C-terminal end of nigrocins. Furthermore, the -AKA fragment at the C-terminal of odorranain-NR is also different from nigrocins. Three different cDNAs encoding two odorranain-NR precursors and only one mature odorranain-NR was cloned from the cDNA library of the skin of O. grahami. This peptide showed antimicrobial activities against tested microorganisms except Escherichia coli (ATCC25922). Its antimicrobial mechanisms were investigated by transmission electron microcopy. odorranain-NR exerted its antimicrobial functions by various means depending on different microorganisms. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The crab-eating frog, Rana cancrivora, is one of only a handful of amphibians worldwide that tolerates saline waters. It typically inhabits brackish water of mangrove forests of Southeast Asia. A large amount of antimicrobial peptides belonging to different families have been identified from skins of amphibians inhabiting freshwater. No antimicrobial peptide from sea amphibians has been reported. In this paper, we firstly reported the antimicrobial peptide and its cDNA cloning from skin secretions of the crab-eating frog R. cancrivora. The antimicrobial peptide was named cancrin with an amino acid sequence of GSAQPYKQLHKVVNWDPYG. By BLAST search, cancrin had no significant similarity to any known peptides. The cDNA encoding cancrin was cloned from the cDNA library of the skin of R. cancrivora. The cancrin precursor is composed of 68 amino acid residues including a signal peptide, acidic spacer peptide, which are similar to other antimicrobial peptide precursors from Ranid amphibians and mature cancrin. The overall structure is similar to other amphibian antimicrobial peptide precursors although mature cancrin is different from known peptides. The current results reported a new family of amphibian antimicrobial peptide and the first antimicrobial peptide from sea amphibian. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
From the venom of Trimeresurus jerdonii, a distinct thrombin-like enzyme, called jerdonobin. was purified by DEAF A-25 ion-exchange chromatography, Sephadex G-75 gel filtration, and fast protein liquid chromatography (FPLC). SDS-PAGE analysis of this enzyme shows that it consists of a single polypeptide chain with a molecular weight of 38,000. The NH2-terminal amino acid sequence of jerdonobin has great homology with venom thrombin-like enzymes documented. Jerdonobin is able to hydrolyze several chromogenic substrates. The enzyme directly clots fibrinogen with an activity of 217 NIH units/mg, The fibrinopeptides released, identified by HPLC consisted of fibrinopeptide A and a small amount of fibrinopepide B. The activities of the enzyme were inhibited by phenylmethylsulfonyl fluoride (PMSF) and p-nitrophenyl-p-guanidinobenzoate (NPGB). However, metal chelator (EDTA) had no effect on it. indicating it is venom serine protease. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A phospholipase A(2) (PLA(2)) called jerdoxin, was isolated from Trimeresurus jerdonni snake venom and partially characterized. The protein was purified by three chromatographic steps. SDS-polyacrylamide gel electrophoresis in the presence or absence of dithiothreitol showed that it had a molecular mass of 15 kDa. Jerdoxin had an enzymatic activity of 39.4 mumol/min/mg towards egg yolk phosphatidyl choline (PC). It induced edema in the footpads of mice. In addition, jerdoxin exhibited indirect hemolytic activity. About 97% hemolysis was observed when 2 mug/ml enzyme was incubated for 90 min in the presence of PC and Ca2+. No detectable hemolysis was noticed when PC was not added. Ca2+ was necessary for jerdoxin to exert its hemolytic activity, since only 52% hemolysis was seen when Ca2+ was absent in the reaction mixture. Furthermore, jerdoxin inhibited ADP induced rabbit platelet aggregation and the inhibition was dose dependent with an IC50 of 1.0 muM. The complete amino acid sequence of jerdoxin deduced from cDNA sequence shared high homology with other snake venom PLA(2)s, especially the D49 PLA(2)s. Also, the residues concerned to Ca2+ binding were conserved. This is the first report of cDNA sequence of T jerdonii venom PLA(2). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
TMVA, a novel C-type lectin-like protein that induces platelet aggregation in a dose-dependent manner, was purified from the venom of Trimeresurus mucrosquamatus. It consists of two subunits, alpha (15,536 Da) and beta (14,873 Da). The mature amino acid sequences of the a (135 amino acids) and beta subunits (123 amino acids) were deduced from cloned cDNAs. Both of the sequences show great similarity to C-type lectin-like venom proteins, including a carbohydrate recognition domain. The cysteine residues of TMVA are conserved at positions corresponding to those of flavocetin-A and convulxin, including the additional Cys135 in the alpha subunit and Cys3 in the beta subunit. SDS-PAGE, mass spectrometry analysis and amino acid sequence showed that native TMVA exists as two convertible multimers Of (alphabeta)(2) and (alphabeta)(4) with molecular weights of 63,680 and 128,518 Da, respectively. The (alphabeta)(2) complex is stabilized by an interchain disulfide bridge between the two alphabeta-heterodimers, whereas the stabilization of the (alphabeta)(4) complex seems to involve non-covalent interactions between the (alphabeta)(2) complexes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel kinin-releasing and fibrin (ogen)olytic enzyme termed jerdonase was purified to homogeneity from the venom of Trimeresurus jerdonii by DEAE Sephadex A-50 anion exchange, Sephadex G-100 (superfine) gel filtration and reverse-phase high performance liquid chromatography (RP-HPLC). Jerdonase migrated as a single band with an approximate molecular weight of 55 kD under the reduced conditions and 53 kD under the non-reduced conditions. The enzyme was a glycoprotein containing 35.8% neutral carbohydrate. The N-terminal amino acid sequence of jerdonase was determined to be IIGGDECNINEHPFLVALYDA, which showed high sequence identity to other snake venom serine proteases. Jerdonase catalyzed the hydrolysis of BAEE, S-2238 and S-2302, which was inhibited by phenymethylsulfonyl fluoride (PMSF), but not affected by ethylenediaminetetraacetic acid (EDTA). Jerdonase preferentially cleaved the Aalpha-chain of human fibrinogen with lower activity towards Bbeta-chain. Moreover, the enzyme hydrolyzed bovine low-molecular-mass kininogen and releasing bradykinin. In conclusion, all results indicated that jerdonase was a multifunctional venom serine protease.
Resumo:
The genes encoding type II DNA topoisomerases were investigated in Giardia lamblia genome, and a type IIA gene, GlTop 2 was identified. It is a single copy gene with a 4476 by long ORF without intron. The deduced amino acid sequence shows strong homology to eukaryotic DNA Top 2. However, some distortions were found, such as six insertions in the ATPase domain and the central domain, a similar to 100 as longer central domain; a similar to 200 as shorter C-terminal domain containing rich charged residues. These features revealed by comparing with Top 2 of the host, human, might be helpful in exploiting drug selectivity for antigiardial therapy. Phylogenetic analysis of eukaryotic enzymes showed that kinetoplastids, plants, fungi, and animals were monophyletic groups, and the animal and fungi lineages shared a more recent common ancestor than either did with the plant lineage; microsporidia grouped with fungi. However, unlike many previous phylogenetic analyses, the "amitochondriate" G. lamblia was not the earliest branch but diverged after mitochondriate kinetoplastids in our trees. Both the finding of typical eukaryotic type IIA topoisomerase and the phylogenetic analysis suggest G. lamblia is not possibly as primitive as was regarded before and might diverge after the acquisition of mitochondria. This is consistent with the recent discovery of mitochondrial remnant organelles in G. lamblia.
Resumo:
Three homologous short-chain neurotoxins, named NT1, NT2 and NT3, were purified from the venom of Naja kaouthia. NT1 has an identical amino acid sequence to cobrotoxin from Naja naja atra [Biochemistry 32 (1993) 2131]. NT3 shares the same sequence with cobrotoxin b [J. Biochem. (Tokyo) 122 (1997) 1252], whereas NT2 is a novel 6 1 -residue neurotoxin. Tests of their physiological functions indicate that NT1 shows a greater inhibition of muscle contraction induced by electrical stimulation of the nerve than do NT2 and NT3. Homonuclear proton two-dimensional NMR methods were utilized to study the solution tertiary structure of NT2. A homology model-building method was employed to predict the structure of NT3. Comparison of the structures of these three toxins shows that the surface conformation of NT1 facilitates the substituted base residues, Arg28, Arg30, and Arg36, to occupy the favorable spatial location in the central region of loop 11, and the cation groups of all three arginines face out of the molecular surface of NT1 This may contribute greatly to the higher binding of NT1 with AchR compared to NT2 and NT3. (C) 2002 Elsevier Science B,V. All rights reserved.
Resumo:
The recent re-emergence of tuberculosis, especially the multidrug-resistant cases, has highlighted the importance of screening effective novel drugs against Mycobacterium tuberculosis. In this study, the in vitro activities of small peptides isolated from snake venom were investigated against multidrug-resistant M. tuberculosis. Minimum inhibitory concentrations (MICs) were determined by the Bactec TB-460 radiometric method. A small peptide with the amino acid sequence ECYRKSDIVTCEPWQKFCYREVTFFPNHPVYLSGCASECTETNSKWCCTTDKCNRARGG (designated as vgf-1) from Naja atra (isolated from Yunnan province of China) venom had in vitro activity against clinically isolated multidrug-resistant strains of M. tuberculosis. The MIC was 8.5 mg/l. The antimycobacterial domain of this 60aa peptide is under investigation. (C) 2003 Elsevier Science B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
A novel bradykinin-potentiating peptide (BPP), designated as TmF, has been purified to homogeneity from the venom of Trimeresurus mucrosquamatus by 70% cold methanol extraction, Sephadex G-15 gel filtration and reverse-phase high performance liquid chromatography (RP-HPLC). The amino acid sequence of TmF was determined to be pGlu-Gly-Arg-Pro-Leu-Gly-Pro-Pro-Ile-Pro-Pro (pGlu denotes pyroglutamic acid), which shared high homology with other BPPs. The molecular mass of TmF was 1.1107 kD as determinated by electrospray ionization-mass spectrometry (ESI-MS), which was in accordance with the calculated value of 1.1106 kD. The potentiating "unit" of TmF to bradykinin-induced (BK-induced) contraction on the guinea-pig ileum in vitro was (1.13 +/- 0.3) unit (mg/L), and TmF (5.0 x 10(-4) mg/kg) increased the pressure-lowering-effect of bradykinin (5.0 x 10(-5) mg/kg) with approximate descent value of (14 +/- 2) mmHg. In addition, TmF inhibited the conversion of angiotensin I to angiotensin 11, 2 x 10(-3) mg of TmF caused 50% inhibition (IC50) of angiotensin-converting enzyme (ACE) hydrolyzing activity to bradykinin.
Resumo:
A chymotrypsin inhibitor, designated NA-CI, was isolated from the venom of the Chinese cobra Naja atra by three-step chromatography. It inhibited bovine (x-chymotrypsin with a K-i of 25 nM. The molecular mass of NA-CI was determined to be 6403.8 Da by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) analysis. The complete amino acid sequence was determined after digestion of S-carboxymethylated inhibitor with Staphylococcus aureus V8 protease and porcine trypsin. NA-CI was a single polypeptide chain composed of 57 amino acid residues. The main contact site with the protease (PI) has a Phe, showing the specificity of the inhibitor. NA-CI shared great similarity with the chymotrypsin inhibitor from Naja naja venom (identities = 89.5%) and other snake venom protease inhibitors. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Anew integrated sequence-structure database, called IADE (Integrated ASTRAL-DSSP-EMBL), incorporating matching mRNA sequence, amino acid sequence, and protein secondary structural data, is constructed. It includes 648 protein domains. Based on the IADE database, we studied the relation between RNA stem-loop frequencies and protein secondary structure. It was found that the alpha-helices and beta-strands on proteins tend to be preferably "coded" by mRNA stem region, while the coils on proteins tend to be preferably "coded" by mRNA loop region. These tendencies are more obvious if we observe the structural words (SWs). An SW is defined by a four-amino-acid-fragment that shows the pronounced secondary structural (alpha-helix or beta-strand) propensity. It is demonstrated that the deduced correlation between protein and mRNA structure can hardly be explained as the stochastic fluctuation effect. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The immunoglobulin (Ig) joining (J) chain plays an important role in the formation of polymeric Igs and their transport into secretions. In the present study, the cDNA sequence of J chain has been cloned from the Chinese soft-shelled turtle (Pelodiscus sinensis) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The cDNA sequence is 2347 bp in length and contains an open reading frame of 480 bp encoding 160 aa including the signal sequence. The deduced amino acid sequence has a high degree of homology with that of an already reported turtle J chain (80.7%), and of chicken (71.3%). By using real-time quantitative RT-PCR analysis, a significant up-regulation of J-chain transcripts was observed in spleen, kidney and blood of turtles injected with inactivated Aeromonas hydrophila, indicating the immune role of J chain in response to bacterial infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Toll-like receptor 3 (TLR3) participates in the innate immune response by recognizing viral pathogens. To investigate grass carp immune system responding to GCRV (grass carp reovirus) infection, the full-length cDNA sequence and genomic organization of grass carp TLR3 (CiTLR3) was identified and characterized. The full-length genome sequence of CiTLR3 is composed of 5668 nucleotides, including five exons and four introns. The full-length of CiTLR3 cDNA is 3681 bp in length and encodes a polypeptide of 904 amino acids with an estimated molecular mass of 102,765 Da and a predicted isoelectric point of 8.35. Analysis of the deduced amino acid sequence indicated that CiTLR3 has four main structural domains, including a signal peptide sequence, 14 LRR (leucine-rich repeat) motifs, a transmembrane region and a TIR (Toll/interleukin-1 receptor) domain. It is most similar to the crucian carp (Carassius auratus) TLR3 amino acid sequence with an identity of 99%. Quantitative RT-PCR analysis showed that CiTLR3 transcripts were significantly up-regulated starting at day 1 and continued through day 7 following GCRV infection (P < 0.05). These data implied that CiTLR3 is involved in antiviral defense, provide molecular and functional information for grass carp TLR3, and implicate their role in mediating immune protection against grass carp viral diseases. (C) 2009 Elsevier Ltd. All rights reserved.