54 resultados para Ambient pressures
Resumo:
As a large conspicuous intertidal brown alga, individuals of Sargassum horneri can reach a length of more than 7 m with a fresh weight of 3 kg along the coasts of the Eastern China Sea. The biomass of this alga as a vital component in coastal water ecology has been well documented. In recent years, a steady disappearance of the algal biomass along the once densely populated coastal areas of the Eastern China Sea has drawn attention in China. Efforts have been made to reconstruct the subtidal algal flora or even to grow the alga by use of long-lines. As part of the efforts to establish an efficient technique for producing seedlings of S. horneri, in this investigation a series of culture experiments were carried out in indoor raceway and rectangular tanks under reduced solar irradiance at ambient temperature in 2007-2008. The investigation demonstrated that: (1) sexual reproduction of S. horneri could be accelerated in elevated temperature and light climates, at least 3 months earlier than in the wild; (2) eggs of S. horneri had the potential to be fertilized up to 48 h, much longer than that of known related species; (3) suspension and fixed culture methods were both effective in growing the seedlings to the long-line cultivation stage; and (4) the life cycle of S. horneri in culture could be shortened to 4.5 months, thus establishing this alga as an appropriate model for investigating sexual reproduction in dieocious species of this genus.
Resumo:
Commercial cultivation of the dioecious brown macroalga Hizikia fusiformis (Harvey) Okamura in East Asia depends on the supply of young seedlings from regenerated holdfasts or from wild population. Recent development of synchronized release of male and female gametes in tumble culture provides a possibility of mass production of young seedlings via sexual reproduction. In this paper, we demonstrate that controlled fertilization can be efficiently realized in ambient light and temperature in a specially designed raceway tank in which the sperm-containing water has been recirculated. The effective fertilization time of eggs by sperm was found to be within six hours. Fast growth and development of the young seedlings relied on the presence of water currents. Velocity tests demonstrated that young seedlings of 2-3 mm in length could withstand a water current of 190 cm s(-1) stop without detachment. Culture experiments at 24 h postfertilization showed that elongation of both the seedlings and their rhizoids were not hampered by high irradiance up to 600 mu mol photons m(-2) stop s(-1) stop. However, growth was slightly retarded if cultured at a temperature of 16 degrees C compared to other culture temperatures of 22, 25 and 29 degrees C. No seedling detachment was observed after transfer of the young seedlings to raft cultivation in the sea after one and 1.5 months post-fertilization, indicating the feasibility of obtaining large quantity of seedlings in such a system.
Resumo:
In coastal ecosystems, suspension-cultured bivalve filter feeders may exert a strong impact on phytoplankton and other suspended particulate matter and induce strong pelagic-benthic coupling via intense filtering and biodeposition. We designed an in situ method to determine spatial variations in the filtering-biodeposition process by intensively suspension-cultured scallops Chlamys farreri in summer in a eutrophic bay (Sishili Bay, China), using cylindrical biodeposition traps directly suspended from longlines under ambient environmental conditions. Results showed that bivalve filtering-biodeposition could substantially enhance the deposition of total suspended material and the flux of C, N and P to the benthos, indicating that the suspended filter feeders could strongly enhance pelagic-benthic coupling and exert basin-scale impacts in the Sishili Bay ecosystem. The biodeposition rates of 1-yr-old scallops varied markedly among culture sites (33.8 to 133.0 mg dry material ind.(-1) d(-1)), and were positively correlated with seston concentrations. Mean C, N and P biodeposition rates were 4.00, 0.51, 0.11 mg ind.-1 d-1, respectively. The biodeposition rates of 2-yr-old scallops were almost double these values. Sedimentation rates at scallop culture sites averaged 2.46 times that at the reference site. Theoretically, the total water column of the bay could be filtered by the cultured scallops in 12 d, with daily seston removal amounting to 64%. This study indicated that filtering-biodeposition by suspension-cultured scallops could exert long-lasting top-down control on phytoplankton biomass and other suspended material in the Sishili Bay ecosystem. In coastal waters subject to anthropogenic N and P inputs, suspended bivalve aquaculture could be advantageous, not only economically, but also ecologically, by functioning as a biofilter and potentially mitigating eutrophication pressures. Compared with distribution-restricted wild bivalves, suspension-cultured bivalves in deeper coastal bays may be more efficient in processing seston on a basin scale.