49 resultados para Advanced Driving Simulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml(-1), and high chl a (56 mu g l(-1)), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 mu g l(-1) in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facing the problems met in studies on predominant hydrocarbon migration pathways, experiments and numerical simulating were done in this thesis work to discuss the migration mechanisms. The aim is to analyze quantitatively the pathway pattern in basin scale and to estimate the hydrocarbon loss on the pathway that offer useful information for confirming the potential hydrocarbon accumulation. Based on our understandings on hydrocarbon migration and the fluid dynamic theory, a series of migration experiments were designed to observe the phenomena where kerosene is used as draining phase driven only by buoyancy force that expulses pore water. These experiments allow to study the formation of migration pathways, the distribution of non-wetting oil along these pathways, and the re-utilizing of previously existing pathways marked by residual traces etc. The types of pattern for migration pathways may be characterized by a phase diagram using two dimensionless numbers: the capillary number and the Bond number. The NMR technique is used to measure the average saturation of residual oil within the pathways. Based our experiment works and percolation concept, a numerical simulation model were proposed and realized. This model is therefore called as BP (Buoyancy Percolation) simulator, since buoyancy is taken as the main driving force in hydrocarbon migration. To make sure that BP model is applicable to simulate the process of oil secondary migration, the experimental phenomena are compared with those simulated with BP model by fractal method, and the result is positive. After then, we use BP simulator to simulate the process of migration of oil in the porous media saturated with water at different scale. And the results seem similar to those cited in literatures. In addition, our software is applied in Paris basin to predict the pathway of hydrocarbon migration happened in the Middle Jurassic reservoirs. It is found that the results obtained with our BP model are generally agree with Hindle (1997) and Bekeles'(1999), but our simulated migration pathway pattern and migration direction seem more reasonable than theirs.