147 resultados para ALUMINUM SILICATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nd:silicate glass was implanted at room temperature by 6.0 MeV C3+ ions with a dose of 2.0 x 10(15) ions cm(-2). A waveguide with thickness of about 6.3 mu m was formed. The prism-coupling method was used to observe the dark modes of the waveguide at 633 nm and 1539 nm, respectively. There are three dark modes at 633 nm, of which one is the enhanced-index mode. The propagation loss of the enhanced-index mode in the waveguide measured at 633 nm is 0.42 dB cm(-1) after annealing at 217 degrees C for 35 min. The reflectivity calculation method was applied to simulate the refractive index profiles in the waveguide. The mode optical near-field output at 633 nm was presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on three-dimensional precipitation of Au nanoparticles in gold ions-doped silicate glasses by a femtosecond laser irradiation and further annealing. Experimental results show that PbO addition plays the double roles of inhibiting hole-trapped centers generation and promoting formation and growth of gold nanoparticles. Additionally, glass containing PbO shows an increased non-linear absorption after femtosecond laser irradiation and annealing. The observed phenomena are significant for applications such as fabrications of three-dimensional multi-colored images inside transparent materials and three-dimensional optical memory, and integrated micro-optical switches. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence of undoped and B-doped ZnO in silicate glasses was investigated by varying the concentration of ZnO (3550 mol%) and B dopant (0-10 mol%) in the glass matrices. The broad and intense near band edge emissions were observed while the visible light emission was very weak. UV luminescence in all samples was red-shifted relative to the exciton transition in bulk ZnO and enhanced by decreased ZnO concentration due to higher degree of structural integrity and the lower aggregation degree of ZnO. Donor B dopant played the double roles of filling conduction bands to broaden band gap when its concentration was lower than 5 mol%, and emerging with conduction bands to narrow the gap when B dopant exceeded this value. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emission intensity of Ni2+ at 1200 nm in transparent ZnO-Al2O3-SiO2 glass ceramics containing ZnAl2O4 nanocrystals is improved approximately 8 times by Cr3+ codoping with 532 nm excitation. This enhanced emission could be attributed to an efficient energy transfer from Cr3+ to Ni2+, which is confirmed by time-resolved emission spectra. The energy transfer efficiency is estimated to be 57% and the energy transfer mechanism is also discussed. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The near-infrared emission intensity of Ni2+ in Yb3+/Ni2+ codoped transparent MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics could be enhanced up to 4.4 times via energy transfer from Yb3+ to Ni2+ in nanocrystals. The best Yb2O3 concentration was about 1.00 mol%. For the Yb3+/Ni2+ codoped glass ceramic with 1.00 mol% Yb2O3, a broadband near-infrared emission centered at 1265 nm with full width at half maximum of about 300 nm and lifetime of about 220 mu s was observed. The energy transfer mechanism was also discussed. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral properties of Yb3+/Ni2+ codoped transparent silicate glass ceramics containing LiGa5O8 nanocrystals were investigated. The near-infrared emission intensity of Ni2+ was largely increased with Yb3+ codoping due to Yb3+-> Ni2+ energy transfer. The qualitative calculation of the energy transfer constant Cs-a and rate Ps-a showed that the Yb3+-> Ni2+ energy transfer was much greater than in the opposite direction. Yb3+/Ni2+ codoped glass ceramics with 0.75 mol % Yb2O3 exhibited a near-infrared emission with full width at half maximum of 290 nm and fluorescent lifetime of 920 mu s. The glass ceramics are promising for broadband optical amplification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the bluish green upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the charge transfer from O-2-to Nb5+ can efficiently contribute to the bluish green emission. The results indicate that transition metal ions without d electrons play an important role in fields of optics when embedded into silicate glass matrix. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics were fabricated. The precipitated nanocrystal phase in the glass ceramics was identified by X-ray diffraction and transmission electron microscope. Broadband near-infrared emission centered at 1220 nm with full width at half maximum of about 240 nm and lifetime of about 250 mu s was observed with 980 nm excitation. The longer wavelength emission compared with Ni2+-doped MgAl2O4 crystal was attributed to the low crystal field occupied by Ni2+ in the glass ceramics. The present Ni2+-doped transparent glass ceramics may have potential applications in broadband optical amplifiers. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescences from bismuth-doped lime silicate glasses were investigated. Luminescences centered at about 400, 650, and 1300 nm were observed, excited at 280, 532 and 808 nm, respectively. These three luminescence bands arise from three different kinds of bismuth ions in the glasses. The visible luminescences centered at 400 and 650 nm arise from Bi3+, and Bi2+, respectively. The infrared luminescences cover the wavelength range from 1000 to 1600 nm when exited by an 808 nm laser diode. The full width at half maximum (FWHM) of the infrared luminescences is more than 205 urn. The intensity of the infrared luminescence decreases with the increment in CaO content. We suggest that the infrared luminescences might arise from Bi+. Such broadband luminescences indicate that the glasses may be potential candidate material for broadband fiber amplifiers and tunable lasers. (C) 2007 Elsevier B.V. All rights reserved.