51 resultados para 3D object
Resumo:
Novel 3D wurtzite ZnSe hierarchical nanostructures have been synthesized by a mild hydrothermal treatment. The as-prepared flowerlike nanostructures efficiently catalyze the photodegradation of methylene blue and ethyl violet present in aqueous solutions under UV light irradiation, exhibiting higher photocatalytic activity than the commercially available photocatalysts P25 and ZnSe microspheres. We also demonstrate that flowerlike morphology is important for the excellent photocatalytic activity.
Resumo:
Rhombohedral-calcite and hexagonal-vaterite types of LuBO:Eu3+ microparticles with various complex self-assembled 3D architectures have been prepared selectively by an efficient surfactant- and template-free hydrothermal process for the first time. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, and cathodoluminescence spectra as well as kinetic decays were used to characterize the samples.
Resumo:
Using sodium dodecyl sulfate (SDS), a 3D microflowery indium hydroxide [In(OH)(3)] structure assembled from 2D nanoflakes was fabricated in a large quantity via a hydrothermal approach at relative low temperature. The obtained In(OH)(3) flowers exhibited a narrow size range between 4 and 6 mu m. The properties of these composites were characterized by XRD, EDX, FE-SEM, TEM, SAED, and TGA. In this work, both the use of urea and SDS and the amounts of these components played important roles in the formation of In(OH)3 with different nanostructures.
Resumo:
A fascinating 3D polycatenane-like metal-organic framework with two kinds of helical chains was reported, in which the helical chains exhibit multiple interweaving modes based on the unusual 2D -> 2D parallel -> 3D parallel interpenetration.
Resumo:
Well-defined 3D Fe3S4 flower-like microspheres were synthesized via a simple biomolecule-assisted hydrothermal process for the first time. On the basis of a series of contrast experiments, the probable growth mechanism and fabrication process of the products were proposed. The electrical conductivity property of the as-synthesized Fe3S4 sample exhibited a rectifying characteristic when a forward bias was applied for the bottom-contacted device. The magnetic properties of the products were studied as well and the results demonstrated that the products presented ferromagnetic properties related to the corresponding microstructure. In addition, we first verified that the Fe3S4 flower-like microspheres could store hydrogen electrochemically, and a discharge capacity of 214 mA h g(-1) was measured without any activation under normal atmospheric conditions at room temperature.
Resumo:
A new magnesium metal-organic framework (MOF) based on an asymmetrical ligand, biphenyl-3,4',5-tricarboxylate (H3PT) has been synthesized and structurally characterized. MOF Mg-3(BPT)(2)(H2O)(4) (1) consists of 10 hexagonal nanotube-like channels and exhibits pronounced hydrogen-sorption hysteresis at medium pressure.