79 resultados para 3A
Resumo:
Stoichiometric reactions between mesityl azide (MesN(3), Mes = 2,4,6-C6H2Me3) and amino-phosphine ligated rare-earth metal alkyl, LLn(CH2SiMe3) (2)(THF) (L = (2,6-C6H3Me2)NCH2C6H4P(C6H5)(2); Ln = Lu (1a), Sc (1b)), amide, LLu(NH(2,6-(C6H3Pr2)-Pr-i))(2)(THF) (2) and acetylide at room temperature gave the amino-phosphazide ligated rare-earth metal bis(triazenyl) complexes, [L(MesN(3))]Ln[(MesN(3))-(CH2SiMe3)](2) (Ln = Lu (3a); Sc (3b)), bis(amido) complex [L(MesN3)] Lu[NH(2,6-C6H3 Pr-i(2))](2) (4), and bis(alkynyl) complex (5) (L(MesN(3))Lu (C CPh)(2))(2), respectively. The triazenyl group in 3 coordinates to the metal ion in a rare eta(2)-mode via N-beta and N-gamma atoms, generating a triangular metallocycle. The amino-phosphazide ligand, L(MesN(3)), in 3, 4 and 5 chelates to the metal ion in a eta(3)-mode via N-alpha and N-gamma atoms. In the presence of excess phenylacetylene, complex 3a isomerized to 3', where the triazenyl group coordinates to the metal ion in a eta(3) mode via Na and Ng atoms.
Resumo:
Rare earth metal bis(alkyl) complexes attached by fluorenyl modified N-heterocyclic carbene (NHC) (Flu-NHC)Ln(CH2SiMe3)(2) (Flu-NHC = (C13H8CH2CH2(NCHCCHN)C6H2Me3-2,4,6); Ln = Sc (2a); Y (2b); Ho (2c); Lu (2d)), ((tBu)Flu-NHC)Ln(CH2SiMe3)(2) ((tBu)Flu-NHC = 2,7-(Bu2C13H6CH2CH2)-Bu-t(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (1a); Lu (1d)) and attached by indenyl modified N-heterocyclic carbene (Ind-NHC)Ln(CH2SiMe3)(2) (Ind-NHC = C9H6CH2CH2(NCHCCHN)C6H2Me3-2,4,6; Ln = Sc (3a); Lu (3d)), under the activation of (AlBu3)-Bu-i and [Ph3C][B(C6F5)(4)], showed varied catalytic activities toward homo- and copolymerization of ethylene and norbornene. Among which the scandium complexes, in spite of ligand type, exhibited medium to high catalytic activity for ethylene polymerization (10(5) g mol(Sc)(-1) h(-1) atm(-1)), but all were almost inert to norbornene polymerization. Remarkably, higher activity was found for the copolymerization of ethylene and norbornene when using Sc based catalytic systems, which reached up to 5 x 10(6) g mol(Sc)(-1) h(-1) atm(-1) with 2a. The composition of the isolated copolymer was varying from random to alternating according to the feed ratio of the two monomers (r(E) = 4.1, r(NB) = 0.013).
Resumo:
A series of amino-pyrrolide ligands (1-4a) and their derivatives aminothiophene ligand (5a), amino-indole ligand (6a) were prepared. Chromium catalysts, which were generated in situ by mixing the ligands with CrCl3(thf)(3) in toluene, were tested for ethylene polymerization. The preliminary screening results revealed that the tridentate amino-pyrrolide ligands containing soft pendant donor, 3a, 4a/CrCl3(thf)(3) systems displayed high catalytic activities towards ethylene polymerization in the presence of modified methyaluminoxane. The electronic and steric factors attached to the ligand backbone significantly affected both the catalyst activity and the polymer molecular weight. Complex 4b was obtained by the reaction of CrCl3(thf)(3) with one equivalent of the lithium salts of 4a, which was the most efficient ligand among the tested ones. The effect of polymerization parameters such as cocatalyst concentration, ethylene pressure, reaction temperature, and time on polymerization behavior were investigated in detail. The resulting polymer obtained by 4b display wax-like and possess linear structure, low molecular weight, and unimodal distribution.
Resumo:
Three heteroligated (salicylaldiminato)(beta-enaminoketonato)titanium complexes [3-Bu-t-2-OC6H3CH=N(C6F5)][(p-XC6H4)N=C(Bu-t)CHC(CF3)O]TiCl2 (3a: X = F, 3b: X = Cl, 3c: X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the beta-enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer.
Resumo:
A series of new titanium complexes bearing two regioisomeric trifluoromethyl-containing enaminoketonato ligands (3a-h and 6a-h), [PhN=CRCHC(CF3)O](2)TiCl2 (3a, R = Me; 3b, R = n-C5H11; 3c, R = i-Pr; 3d, R = Cy; 3e, R = t-Bu; 3f, R = CH=CHPh; 3g, R = Et; 3h, R = n-C11H23) and [PhN=C(CF3)CHC(R)O](2)TiCl2 (6a, R = Ph; 6b, R = n-C5H11; 6c, R = i-Pr; 6d, R = Cy; 6e, R = t-Bu; 6f, R = CH=CHPh; 6g, R = CHPh2; 6h, R = CF3) have been synthesized and characterized. X-ray crystal structures analyses suggest that complexes 3c-e and 6c-d all adopt a distorted octahedral geometry around the titanium center. Complexes 3c, 3d and 6c display a cis-configuration of the two chlorine atoms around the titanium center, while complex 6d shows a trans-configuration of the two chlorine atoms. Especially, the configurational isomers (cis and trans) of complex 3e were identified both in solution and in the solid state by NMR and X-ray analyses. With modified methylaluminoxane as a cocatalyst, all the complexes are active towards ethylene polymerization, and produce high molecular weight polymers.
Resumo:
The formation of fullerooxazoles from C61HPh3- has been examined in benzonitrile (PhCN), m-methoxybenzonitrile (m-OCH3PhCN), m-tolunitrile (m-CH3PhCN), and o-tolunitrile (o-CH3PhCN), where cis-1 bisadducts wit h Ph-, m-OCH3Ph-, m-CH3Ph-, and o-CH3Ph-substituted cyclic imidate next to the phenylmethano are formed its evidenced by various characterizations. Interestingly, only regioisomers 2a-d with the oxygen atom bonded to C4/C5 and the nitrogen atom bonded to C3/C6 are generated its demonstrated by heteronuclear multiple bond coherence (HMBC) NMR, while the alternative regioisomers 3a-d, which have the oxygen and nitrogen atoms at C3/C6 and C4/C5, respectively, are not formed from the reactions, even though the DFT (density functional theory) calculations have predicted that the energy differences between the two types of regioisomers are very small, with regioisomers 3a-d actually having lower energies than 2a-d The results are rationalized by the charge distributions Of C61HPh3-, where computational calculations have shown that the negative charges on C4 and C5 are greater than those on C3 and C6, indicating that the exhibited site selectivity of heteroatoms is a result of the charge-directed addition process
Resumo:
The N,N- bidentate ligands 2- {( N- 2,6- R) iminomethyl)} pyrrole ( HL1, R) dimethylphenyl; HL2, R) diisopropylphenyl) have been prepared. HL1 reacted readily with 1 equiv of lanthanide tris( alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), affording lanthanide bis(alkyl) complexes L(1)Ln(CH2SiMe3)(2)(THF)(n) (1a, Ln= Lu, n = 2; 1b, Ln = Sc, n = 1) via alkane elimination. Reaction of the bulky ligand HL2 with 1 equiv of Ln(CH2SiMe3)(3)( THF)(2) gave the bis(pyrrolylaldiminato) lanthanide mono(alkyl) complexes L(2)(2)Ln- (CH2SiMe3)(THF) (2a, Ln) Lu; 2b, Ln = Sc), selectively. The N,N- bidentate ligand HL3, 2- dimethylaminomethylpyrrole, reacted with Ln( CH2SiMe3) 3( THF) 2, generating bimetallic bis( alkyl) complexes of central symmetry ( 3a, Ln = Y; 3b, Ln = Lu; 3c, Ln = Sc). Treatment of the N,N,N,N- tetradentate ligand H2L4, 2,2'-bis(2,2-dimethylpropyldiimino) methylpyrrole, with equimolar Lu(CH2SiMe3)(3)(THF)(2) afforded a C-2- symmetric binuclear complex ( 4). Complexes 3a, 3b, 3c, and 4 represent rare examples of THF- free binuclear lanthanide bis( alkyl) complexes supported by non- cyclopentadienyl ligands. All complexes have been tested as initiators for the polymerization of isoprene in the presence of AlEt3 and [ Ph3C][B(C6F5)(4)]. Complexes 1a, 1b, and 3a show activity, and 1b is the most active initiator, whereas 2a, 2b, 3b, 3c, and 4 are inert.
Resumo:
A series of NNOO-tetradentate enolic Schiff-base ligands were prepared where ligand L-1 = bis(benzoylacetone)propane-1,2-diimine, L-2 = bis(acetylacetone)-propane-1,2-diimine, L-3 = bis-(acetylacetone)cyclohexane-1,2-diimine. Their further reaction with aluminum tris(ethyl) formed complexes LAlEt (1a, 2a and 3a). The solid structure of complexes la, 2a and 3a confirmed by X-ray single crystal analysis manifested that these complexes were all monomeric and five-coordinated with an aluminum atom in the center. The configurations of these complexes varied from trigonal bipyramidal geometry (tbp) to square pyramidal geometry (sqp) due to their different auxiliary ligand architectures. H-1 NMR spectra indicated that all these complexes retained their configuration in solution states. Their catalytic properties to polymerize racemic-lacticle (rac-LA) in the presence of 2-propanol were also studied. The diimine bridging parts as well as the diketone segment substituents had very close relationship with their performance upon the polymerization process. All these complexes gave moderately isotactic polylactides with controlled molecular weight and very narrow molecular weight distributions.
Resumo:
A series of neutral palladium(II) complexes bearing non-symmetric bidentate pyrrole-iminato or salicylaldiminato chelate ligands have been synthesized, and the structure of representative complexes (3a, 4a, and 5a) have been confirmed by X-ray crystallographic analysis. These palladium complexes have been investigated as catalysts for the polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display high activities and produce vinyl-addition polynorborenes. Catalytic activity of up to 8.52 x 10(3) kg/mol(Pd) h has been observed. Wide-angle X-ray diffraction (WAXD) has been used to investigate the polymer microstructure and it has been found that they are non-crystalline.
Resumo:
Reactions of [ Cp(2)Ln(mu-Cl)](2) (Cp = eta(5)-C5H5, Ln = Nd, Yb, Dy, Gd, Er) with an equivalent of [ (THF)(3)LiE2C2B10H10Li. (TT-IF) (THF)](2) (E = S, Se) in THF afforded the dinuclear sandwich complexes of formula[Cp(2)LnE(2)C(2)B(10)H(10)](2)[Li(THF)(4)](2) [E = S, Ln = Nd (1a), Yb (2a), Dy (3a), Gd (4a), Er (5a); E = Se, Ln = Nd (1b), Yb (2b), Dy (3b), Gd (4b), Er (5b)]. The molecular structures of complexes la, 2a and 2b were determined by the single crystal X-ray structure analyses. Two lanthanide atoms are connected by a pair chalcogen (eta(1), eta(2)-E2C2B10H10) bridging ligands and the central Ln(2)E(2) four membered ring is not planar.
Resumo:
Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.
Resumo:
The photo-induced decarbonylation of Cp'Cr(NO)(CO)(2) (1a) in MeCN solution in the presence of R2E2 (E = S, Se; R = Me, Ph) leads to the formation of chalcogenolato-bridged binuclear complexes Cp-2'Cr-2(NO)(2)(mu -ER)(2) [E = S; R = Me (2a), Ph (3a); E = Se, R = Me (4a), Ph (5a)] while reactions between Cp'M(NO)(CO)(2) [M = Mo (1b), W (1c)] and Ph2E2 (E = S, Se) result in mononuclear complexes Cp'M(NO)(EPh)(2) [M = Mo; E = S (9b), Se (10b); M = W, E = S (11c), Se (12c)]. The corresponding reactions of (1b) with Me2E2 (E = S, Se) yielded both mono and binuclear complexes: Cp'Mo(NO)(SeMe)(2) (8b), Cp-2'Mo-2(NO)(2)(mu -EMe)(2) [E = S (6b), Se (7b)]. The new complexes have been characterized by i.r., H-1-, C-13-n.m.r. spectra and by electron-impact mass spectrometry.
Resumo:
The reactions of half-sandwich diselenolate Mo and W complexes (CpM)-M-#(NO)(SePh)(2) (M = Mo; Cp-# = Cp' (1a), MeCp (1b); M = W; Cp-# = Cp' (1c)) with (Norb)Mo(CO)(4), Ni(COD)(2) and Fe(CO)(5) have been investigated. Treatment of (1a), (1b) and (1c) with (Norb)Mo(CO)(4) in PhMe gave the bimetallic complexes: Cp'Mo(NO)(mu -SePh)(2)Mo(CO)(4) (2a), MeCpMo(NO)(mu -SePh)(2)Mo(CO)(4) (2b) and Cp'W(NO)(mu -SePh)(2)Mo(CO)(4) (2c) in moderate yields. Irradiation of (1a) and (1c) in the presence of Fe(CO)(5) gave heterobimetallic complexes Cp'Mo(CO)(mu -SePh)(2)Fe(CO)(3) (3a) and Cp'W(NO)(mu -SePh)(2)Fe(CO)(3) (3c). Ni(COD)(2) reacts with two equivalents of (1a), (1b) and (1c) to give [Cp'Mo(NO)(mu -SePh)(2)](2)Ni (4a), [MeCpMo(NO)(mu -SePh)(2)](2)Ni (4b) and [Cp'W(NO)(mu -SePh)(2)](2)Ni (4c) in good yields. The new heterobimetallic complexes were characterized by i.r., H-1-n.m.r., C-13-n.m.r. and EI-MS spectroscopy.
Resumo:
The reaction of [Cp*RhCl2](2) 1 with dilithium 1,2-dicarba-closo-dodecaborane(12)-1,2-dithiolate (a) and -diselenolate (b) afforded the 16-electron rhodium(III) half-sandwich complexes Cp*Rh[E2C2(B10H10)] [E=S (3a), Se (3b)]. The 18-electron trimethylphosphane rhodium(III) half-sandwiches Cp*Rh(PMe3)[E2C2(B10H10)] 4a-c were prepared from the reaction of Cp*RhCl2(PMe3) 2 with the same dichalcogenolates, including the ditelluride (c). The complexes 4a,b could also be obtained from the reaction of 3a,b with trimethylphosphane. The molecular geometry of 4b was determined by X-ray structural analysis. The 16-electron complexes 3 an monomeric in solution as shown by multinuclear magnetic resonance (H-1-, B-11-, C-13-, P-31- Se-77-, Rh-103-, Te-125-NMR). also in comparison with the data for the trimethylphosphane analogues 4a-c and for 6a in which the rhodium bears the eta(5)-1,3-C5H3 Bu-t(2) ligand. The Rh-103 nuclear shielding is reduced by 831 ppm (3a) and 1114 ppm (3b) with respect to the 18-electron complexes 4a,b. Similarly, the Se-77 nuclear shielding in 3b is reduced by 676.4 ppm with respect to that in 4b. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Some novel macrocyclic (arylene ether sulfone) containing cardo groups and (arylene ether ketone sulfone) oligomers have been synthesized in high yields by a nucleophilic aromatic substitution reaction of 4,4'-difluorophenylsulfone with bisphenols in the presence of anhydrous potassium carbonate under a pseudo-high-dilution condition. Detailed structural characterization of these oligomers by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), fast atom bombardment mass spectrometry (f.a.b.-m.s.), nuclear magnetic resonance spectrometry (n.m.r.) and single-crystal X-ray structure analysis confirms their cyclic nature, and the composition of the oligomeric mixtures is provided by g.p.c. analysis. Ring polymerization of cyclic oligomers 3a to a high molecular weight polymer with M-w of 59.1 k was achieved by heating at 290 degrees C for 40 min in the presence of a nucleophilic initiator. (C) 1998 Elsevier Science Ltd. All rights reserved.