56 resultados para 230106 Real and Complex Functions
Resumo:
The extraction of zinc(II) and cadmium(II) from chloride solution by mixtures of primary amine N1923 and Cyanex272 (HA) was studied. The synergistic effect was observed for the extraction of zinc(II) while no synergistic effect for cadmium(II), which makes it possible to separate zine(II) and cadmium(II) with the mixtures. The results showed that zinc(II) was extracted as (RNH3Cl)(3) . ZnCIA instead of ZnA(2) . 2HA which was extracted by Cyanex272 alone. The extraction mechanism was discussed and the formation constants and thermodynamic functions were determined. The separation factors between zinc(II) and cadmium(II) were calculated.
Resumo:
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the alpha-, gamma- and delta-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13A degrees N.
Resumo:
Experiments on growth characters and ecological functions of the macroalgae Gracilaria lemaneiformis, collected from south China, were conducted in polyculture areas of kelp and filter-feeding bivalve in Sanggou Bay in Weihai City, Shandong, in north China from May 2002 to May 2003. The results of 116 days cultivation showed that the average wet weight of alga increased 89 times from 0.1 to 8.9 kg rope(-1), with an average specific growth rate ( based on wet weight) of 3.95% per day. The most favorable water layer for its growth was 1.0 - 1.8 m below the surface in July and August, with an average specific growth rate of 8.2% per day in 30-day experiments. Photosynthetic activity changed seasonally, with an average of 7.3 mg O-2 g dw(-1) h(-1). The maximum rate (14.4 mg O-2 g dw(-1) h(-1)) was recorded in July, or 19.3 mg CO2 g dw(-1) h(-1), while the minimum (0.40 mg CO2 g dw(-1) h(-1)) was in April. This study indicated that the culture of G. lemaneiformis is an effective way to improve water quality where scallops are cultivated intensively.
Resumo:
本文通过对卷曲类工件IGES文件的分析,本文提出了一种新的基于IGES文件的测量路径规划策略。根据张量积曲面的性质,提出了一种曲面组合算法,运用了张量积曲面的性质,将曲面操作转化为多次曲线操作,将IGES文件中存储的多片曲面片组合为一整片曲面,从而为自由曲面测量路径的提取提供了数学模型。运用二次逼近原理,提出了一种B样条曲线上的等距采样算法。通过在实际系统进行实验,上述策略及算法得到了验证,并在自主开发的智能测量建模加工一体化装备中得到了应用。
Resumo:
介绍了如何把模糊控制算法与现场总线中的CAN总线结合起来应用于控制系统 ,并设计了一种智能型模糊控制算法 ,给出了系统的整体结构和现场模糊控制单元的硬件实现电路及其软件设计思路 ;系统的仿真结果表明 ,该系统实时性好 ,控制精度较高 ,鲁棒性强 ,在现场控制中有效可行
Resumo:
Seismic While Drilling (SWD) is a new wellbore seismic technique. It uses the vibrations produced by a drill-bit while drilling as a downhole seismic energy source. The continuous signals generated by the drill bit are recorded by a pilot sensor attached to the top of the drill-string. Seismic wave receivers positioned in the earth near its surface receive the seismic waves both directly and reflection from the geologic formations. The pilot signal is cross-correlated with the receiver signals to compute travel-times of the arrivals (direct arrival and reflected arrival) and attenuate incoherent noise. No downhole intrusmentation is required to obtain the data and the data recording does not interfere with the drilling process. These characteristics offer a method by which borehole seismic data can be acquired, processed, and interpreted while drilling. As a Measure-While-Drill technique. SWD provides real-time seismic data for use at the well site . This can aid the engineer or driller by indicating the position of the drill-bit and providing a look at reflecting horizons yet to be encountered by the drill-bit. Furthermore, the ease with which surface receivers can be deployed makes multi-offset VSP economically feasible. First, this paper is theoretically studying drill-bit wavefield, interaction mode between drill-bit and formation below drill-bit , the new technique of modern signal process was applied to seismic data, the seismic body wave radiation pattern of a working roller-cone drill-bit can be characterized by theoretical modeling. Then , a systematical analysis about the drill-bit wave was done, time-distance equation of seismic wave traveling was established, the process of seismic while drilling was simulated using the computer software adaptive modeling of SWD was done . In order to spread this technique, I have made trial SWD modeling during drilling. the paper sketches out the procedure for trial SWD modeling during drilling , the involved instruments and their functions, and the trial effect. Subsurface condition ahead of the drill-bit can be predicted drillstring velocity was obtained by polit sensor autocorrelation. Reference decovolution, the drillstring multiples in the polit signal are removed by reference deconvolution, the crosscorrelation process enhance the signal-to-noise power ratio, lithologies. Final, SWD provides real-time seismic data for use at the well site well trajectory control exploratory well find out and preserve reservoirs. intervel velocity was computed by the traveltime The results of the interval velocity determination reflects the pore-pressure present in the subsurface units ahead of the drill-bit. the presences of fractures in subsurface formation was detected by shear wave. et al.
Resumo:
Maichen Depression lie between Leizhou Peninsula and Qiongzhou Strait. Oil and gas have been discovered in Weixinan Depression, Wushi Depression and Fushan Depression, which pertain to a same basin — North Sea Basin along with Maichen Depression.Jiangsu Oil started exploration at 2002. The first well began to drill at November, 2004 after gravity survey, electric method prospecting and 2D seismic exploration had been finished. Generating rock and hydrocarbon shows have been verified by the drilling. Low yield oil stream has been tested. And we started 3D seismic exploration at November, 2005. My thesis topic came from the actual needs of our exploration in the Maichen Depression. In the thesis, I give emphasis to analyse the own seismic geologic conditions of Maichen Depression. By real tests, we choosed the means to overcome or weaken the unfavorably impress owing to the own coditions in Maichen Depression. Finally, we obtained the usable seismic data. 1. Owing to the multiphase eruptive rock during the Quaternary Period, the near surface layers are very inhomogeneous. By simultaneous testing at same point with short refraction, uphole surveys of radial source and of surface source, the most appropriate method had been sorted out. Radial source uphole survey has been regarding the best practicable means in the complex area. Accurate surficial geology was very helpful to choosing of acquirement means and parameters. Basically the appropriate method of seismic acquirement has been built at Maichen area. 2. The seismic primary data has many, very strong and complex noise. By noise characteristic analysis in different domain, many means of denoising had been paralleled individual and joint application researched. As a result, the pre-stack multidomain joint denoise flow was the appropriate method. It can improve the seismic signal-to-noise ratio. 3. The problem of seismic static correction at Maichen Depression is very conspicuous. Many static correction methods had been tested individual and joint researched. The seismic data quality has been improved after choosing the appropriate combination of static correction flows. 4. Although the above-mentioned process are resultful, the seismic profile quality is just passable. Some reflector continuity and fault zone imagery are ambiguity. So it was the useful method to reduce the structural ambiguity during seismic interpretation that built-up geologic model in accord with real geologic character by areal structure study upon backbone seismic profiles. In the same way, traps have been assessed and drill targets have been selected.
Resumo:
Theory of limit analysis include upper bound theorem and lower bound theorem. To deal with slope stability analysis by limit analysis is to approximate the real solution from upper limit and lower limit. The most used method of limit analysis is upper bound theorem, therefore it is often applied to slope engineering in many cases. Although upper bound approach of limit analysis can keep away from vague constitutive relation and complex stress analyses, it also can obtain rigorous result. Assuming the critical surface is circular slip surface, two kinematically admissible velocity fields for perpendicular slice method and radial slice method can be established according to the limit analysis of upper bound theorem. By means of virtual work rate equation and strength reduction method, the upper-bound solution of limit analysis for homogeneous soil slope can be obtained. A log-spiral rotational failure mechanism for homogeneous slope is discussed from two different conditions which represent the position of shear crack passing the toe and below the toe. In the dissertition, the author also establishes a rotational failure mechanics with combination of different logarithmic spiral arcs. Furthermore, the calculation formula of upper bound solution for inhomogeneous soil slope stability problem can be deduced based on the upper bound approach of rigid elements. Through calculating the external work rate caused by soil nail, anti-slide pile, geotechnological grid and retaining wall, the upper bound solution of safety factor of soil nail structure slope, slip resistance of anti-slide pile, critical height of reinforced soil slope and active earth pressure of retaining wall can be obtained by upper bound limit analysis method. Taking accumulated body slope as subject investigated, with study on the limit analysis method to calculate slope safety factor, the kinematically admissible velocity fields of perpendicular slice method for slope with broken slip surface is proposed. Through calculating not only the energy dissipation rate produced in the broken slip surfaces and the vertical velocity discontinuity, but also the work rate produced by self-weight and external load, the upper bound solution of slope with broken slip surface is deduced. As a case study, the slope stability of the Sanmashan landslide in the area of the Three Gorges reservoir is analyzed. Based on the theory of limit analysis, the upper bound solution for rock slope with planar failure surface is obtained. By means of virtual work-rate equation, energy dissipation caused by dislocation of thin-layer and terrane can be calculated; furthermore, the formulas of safety factor for upper bound approach of limit analysis can be deduced. In the end, a new computational model of stability analysis for anchored rock slope is presented after taking into consideration the supporting effect of rock-bolts, the action of seismic force and fissure water pressure. By using the model, not only the external woke-rate done by self-weight, seismic force, fissure water pressure and anchorage force but also the internal energy dissipation produced in the slip surface and structural planes can be totally calculated. According to the condition of virtual work rate equation in limit state, the formula of safety factor for upper bound limit analysis can be deduced.
Resumo:
Using the approximate high-frequency asymptotic methods to solve the scalar wave equation, we can get the eikonal equation and transport equation. Solving the eikonal equation by the method of characteristics provides a mathematical derivation of ray tracing equations. So, the ray tracing system is folly based on the approximate high-frequency asymptotic methods. If the eikonal is complex, more strictly, the eikonal is real value at the rays and complex outside rays, we can derive the Gaussian beam. This article mainly concentrates on the theory of Gaussian beam. To classical ray tracing theory, the Gaussina beam method (GBM) has many advantages. First, rays are no longer required to stop at the exact position of the receivers; thus time-consuming two-point ray tracing can be avoided. Second, the GBM yields stable results in regions of the wavefield where the standard ray theory fails (e.g., caustics, shadows zones and critical distance). Third, unlike seismograms computed by conventional ray tracing techniques, the GBM synthetic data are less influenced by minor details in the model representation. Here, I realize kinematical and dynamical system, and based on this, realize the GBM. Also, I give some mathematical examples. From these examples, we can find the importance and feasibility of the ray tracing system. Besides, I've studied about the reflection coefficient of inhomogeneous S-electromagnetic wave at the interface of conductive media. Basing on the difference of directions of phase shift constant and attenuation constant when the electromagnetic wave propagates in conductive medium, and using the boundary conditions of electromagnetic wave at the interface of conductive media, we derive the reflection coefficient of inhomogeneous S-electromagnetic wave, and draw the curves of it. The curves show that the quasi total reflection will occur when the electromagnetic wave incident from the medium with greater conductivity to the medium with smaller conductivity. There are two peak, values at the points of the critical angles of phase shift constant and attenuation constant, and the reflection coefficient is smaller than 1. This conclusion is different from that of total reflection light obviously.
Resumo:
Study of 3D visualization technology of engineering geology and its application to engineering is a cross subject which includes geosciences, computer, software and information technology. Being an important part of the secondary theme of National Basic Research Program of China (973 Program) whose name is Study of Multi-Scale Structure and Occurrence Environment of Complicated Geological Engineering Mass(No.2002CB412701), the dissertation involves the studies of key problems of 3D geological modeling, integrated applications of multi-format geological data, effective modeling methods of complex approximately layered geological mass as well as applications of 3D virtual reality information management technology.The main research findings are listed below:Integrated application method of multi-format geological data is proposed,which has solved the integrated application of drill holes, engineering geology plandrawings, sectional drawings and cutting drawings as well as exploratory trenchsketch. Its application can provide as more as possible fundamental data for 3Dgeological modeling.A 3D surface construction method combined Laplace interpolation points withoriginal points is proposed, so the deformation of 3D model and the crossing error ofupper and lower surface of model resulted from lack of data when constructing alaminated stratum can be eliminated.3D modeling method of approximately layered geological mass is proposed,which has solved the problems of general modeling method based on the sections or points and faces when constructing terrain and concordant strata.The 3D geological model of VII dam site of Xiangjiaba hydropower stationhas been constructed. The applications of 3D geological model to the auto-plotting ofsectional drawing and the converting of numerical analysis model are also discussed.3D virtual reality information integrated platform is developed, whose mostimportant character is that it is a software platform having the functions of 3D virtualreality flying and multi-format data management simultaneously. Therefore, theplatform can load different 3D model so as to satisfy the different engineeringdemands.The relics of Aigong Cave of Longyou Stone Caves are recovered. Thereinforcement plans of 1# and 2# cave in phoenix hill also be expressed. The intuitiveexpression provided decision makers and designers a very good environment.The basic framework and specific functions of 3D geological informationsystem are proposed.The main research findings in the dissertation have been successfully applied to some important engineering such as Xiangjiaba hydropower station, a military airport and Longyou Stone Caves etc.
Resumo:
A hyphenated method for the isolation and identification of components in a traditional Chinese medicine of Honeysuckle was developed. Ion-exchange chromatography (IEC) was chosen for the fractionation of Honeysuckle extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further analyzed by reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer (RPLC-APCI/MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) with matrix of oxidized carbon nanotubes, respectively. It can be noted totally more than 117 components were detected by UV detector, APCI/MS and MALDI-TOF/MS in Honeysuckle extract except the, 145 components identified by MALDI-TOF/MS alone with this integrated approach, and 7 of them were preliminary identified according to their UV spectra and mass spectra performed by APCI/MS and MALDI-TOF/MS, respectively. The obtained analytical results not only indicated the approach of integration IEC fractionation with RPLC-APCI/MS and MALDI-TOF/MS is capable of analyzing complex samples, but also exhibited the potential power of the mass spectrometer in detection of low-mass compounds, such as traditional Chinese medicines (TCMs) and complex biological samples. (c) 2005 Elsevier B.V. All rights reserved.