52 resultados para 165 GAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

东灵山地区年均降水量659.7mm,单次降水以雨量小、雨强低的降水为主。水汽压(年均17.7mb)、相对湿度(年均66%)的季节变化呈现生长季高、冬季低的趋势。年均蒸发量1019.5mm;气温、风速、日照时间和水压与月蒸发量和日蒸量相关显著;气温、日照时间和水压分别在11-6月、7-8月和9-10月为决定蒸发量的首要因子。枯枝落叶层、土壤层湿度主要受前十日降水量和坡向影响。 植物体含水量生长季节较高,冬季较低;含水量随径级的增大而降低。六个灌木树种的平均含水量大小顺序为:毛榛(48.62%)最高荆条(36.32%)最低;七个乔木树种水分含量为油松,56.14%;蒙椴,54.19%;华北落叶松,52.91%;五角枫,43.64%;辽东栎,41.87%;棘皮桦,41.13%;大叶白腊,37.79%。几种植被类型的储水量为:辽东栎林,82.08mm;华北落叶松林,47.35mm;混交林,34.60mm;油松林,31.33mm;灌丛,12.40mm。各树种叶片日最低水势的季节均值为:辽东栎,-16.1bar;五角枫,-15.8bar;大叶白腊,-15.1bar;糠椴,-13.4bar;棘皮桦,-12.3bar;蒙椴,-12.2bar。叶片水势的日间变化均呈一“V”形曲线;光照在叶片水势的日间变化中起着决定性作用。 96年各树种平均单株树干茎流量为辽东栎,30.3mm(4.19%);华北落叶松,16.1mm(2.22%);油松,8.9mm(1.23%);棘皮桦,2.9mm(0.40%)。两个生长季各林分冠层的水量平衡为:辽东栎林,树干流茎量101.87mm(9.18%),穿透降水量823.08mm(74.15%),截留量185.05mm(16.67%);华北落叶松林,树干径流量66.88mm(6.03%),穿透降水量836.92mm(75.40%),截留量206.20mm(18.58);混交林,树干径流量50.13(4.52%),穿透降水量846.78mm(76.29%),截留量212.20mm(19.12%);油松林,树干径流量33.90mm(3.05%),穿透降水量934.88mm(84.22%),截留量141.22mm(12.72%)。多元回归分析表明,树干流茎量S与降水量P和前24小时降水量P_1呈显著正相关关系;穿透降水量T与降水量P和最大雨强M正相关显著。附加截留量与降水时间成正比。 枯枝落叶层的生物量为:油松林,25.56t/hm~2;华北落叶松林20.01t/hm~2;辽东栎林,8.31t/hm~2;混交林,7.98t/hm~2。枯枝落叶层的平均实际持水量和有效持水量均以油松林最大,其次是华北落叶松林,而混交林和辽东栎林较低;枯枝落叶层的实际持水量和有效持水量的季节变化分别与前十日降水量P10成正相关和负相关关系。枯枝落叶层的截留量为油松林>华北落叶松林>辽东栎林>混交林;油松林(145.632mm和90.800mm)混交林(61.816mm和54.504mm)。油松林、辽东栎林、混交林和华北落叶松林去除枯枝落叶层后,土壤入渗量比对照平均降低100mm以上;表层土壤含水量分别比对照土壤下降了6.26、18.26、15.06和15.07个百分点。地表径流量分别增加了,辽东栎林34.299mm(603%)和15.816mm(525%);油松林14.593mm(732%)和10.584mm(1321%);混交林12.004mm(181%)和7.275mm(364%);华北落叶松林3.555mm(118%),3.275mm(229%)。96年生长季,各土壤流失量分别增加了:油松林172.751t/hm~2(124倍);辽东栎林836.500t/hm~2(119倍);混交林172.499t/hm~2(47倍);华北落叶松林11.557t/hm~2(11倍)。表层土壤容重分别增加了:油松林15.0%和20.6%,辽东栎林18.4%和28.2%,混交林11.5%和38.5%,华北落叶松林4.3%和17.1%。 0-60cm深度土壤容重平均值的大小顺序为:草地>灌丛>辽东栎林>油松林>混交林>华北落叶松林;而土壤孔隙度的大小顺序为华北落叶松林>混交林>油松林>辽东栎林>灌丛>草地。两个生长季为土壤实际储水量的均值:油松林,124.45mm,78.62mm;辽东栎林,131.23mm,87.72mm;混交林,180.41mm,113.90mm;华北落叶松林,165.53mm,127.95mm;灌丛,172.50mm,89.81mm;草地,152.92mm,89.59 mm分别比干旱年份97年高出45.83mm、43.51mm、51.63mm、37.58mm、82.69mm和63.33mm。两个生长季的地表径流量为草地,30.930mm(2.79%);灌丛,16.321mm(147%);油松林,2.911mm(0.26%);辽东栎林,8.703mm(0.78%);混交林,8.625mm(0.78%);华北落叶松林,4.447mm(0.40%)。油松林、混交林和华北落叶松林地表径流量与降水量P(mm)和最大雨强(mm/h)正相关显著;而辽东栎林、灌丛和草地的地表径流量则与降水量P(mm)、平均雨强Q(mm/hr)和最大雨强M(mm/hr)三者之间呈显著正相关关系。与草地相比(1220.093kg/hm~2,100%),灌丛、辽东栎林、混交林、油松林和华北落叶松林96年生长季的土壤流失量分别降低了85.05%、94.26%、96.99%、98.86和99.14%。 降水量是影响小流域径流量时间变化的主要因素;南沟和马牙石沟96年的径流量分别是97年的8.19倍和7.87倍,而径流深(46.25mm,52.75mm)分别比97年(5.65mm,6.70mm)高出40.60mm和46.05mm。两个小流域由于面积的差异而使南沟两年的径流量分别比马牙石沟高出2773.136m~3(13.15%)和235.434m~3(8.79%)。96年和97年马牙石沟径流深比南沟高出6.5mm(14.05%)和1.05mm(18.58%)。在地处大陆性季风气候区的东灵山地区,用0.010m~3/min/km~2/hr能较好地分割小流域的洪峰和基流。在五次暴雨水文曲线中,马牙石沟的快速径流量分别比南沟高出25.00%到143.33%。五次洪水水文响应R的平均值南沟为0.218%,马牙石沟为0.404%;与海洋性气候地区相比,东灵山地区小流域的R值要低一到两个数量级。马牙石沟洪峰流量Qp的平均值为418.772L/min要比南沟(281.191L/min)大48.9%。东灵山地区小流域的洪水径流过程可分为三种类型。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以9 个芍药野生种(15 份种质)、104 个品种及2 个牡丹芍药组间杂种的花瓣为材料,利用液质联用技术鉴定了花瓣中的色素成分并探讨了芍药花色形成的化学机制和化学分类法。 结果表明,芍药花中主要含有5 种花青素,即芍药花素-3,5-二葡糖苷( peonidin-3,5-di-O-glucoside , Pn3G5G ); 矢车菊素-3 , 5- 二葡糖苷( cyanidin-3,5-di-O-glucoside , Cy3G5G ); 天竺葵素-3 , 5- 二葡糖苷( pelargonidin-3,5-di-O-glucoside , Pg3G5G ); 芍药花素-3- 葡糖苷(peonidin-3-O-glucoside,Pn3G)和矢车菊素-3-葡糖苷(cyanidin-3-O-glucoside,Cy3G)。此外,3 种微量的花青素首次在芍药中发现:它们分别为芍药花素-3-葡萄糖-5-阿拉伯糖苷(peonidin-3-O-glucoside-5-O-arabinoside,Pn3G5Ara)、矢车菊素-3- 葡萄糖-5- 半乳糖苷( cyanidin-3-O-glucoside-5-O-galactoside ,Cy3G5Gal)和天竺葵素-3-葡萄糖-5-半乳糖苷(pelargonidin-3-O-glucoside-5-Ogalactoside,Pg3G5Gal)。特征花青素Cy3G5Gal 和Pg3G5Gal 仅在新疆芍药(Paeonia anomala L.)及其亚种川赤芍(P. anomala subsp. veitchii(Lynch) D. Y.Hong & K. Y. Pan)中被检测出来,表明它们属于同一个种。Pn3G5Ara 仅存在于欧洲的野生芍药花瓣中,表明中国野生芍药和欧洲芍药的花青素代谢途径不同。 芍药花瓣中主要含有11 种花黄素,均为黄酮醇类物质。包括栎精-3,7 二葡糖苷( quercetin-3,7-di-O-glucoside )、山奈酚-3 , 7 二葡糖苷(kaempferol-3,7-di-O-glucoside)、异鼠李素-3,7 二葡糖苷(isorhamnetin-3,7-di-Oglucoside)、栎精-3-O-(6”-没食子酰基)-葡糖苷 [quercetin-3-O-(6”-O-galloyl)-glucoside] 、栎精-3- 葡糖苷( quercetin-3-O-glucoside )、山奈酚-7- 葡糖苷( kaempferol-7-O-glucoside )、山奈酚-3-O- ( 6”- 没食子酰基) - 葡糖苷[kaempferol-3-O-(6”-O-galloyl)-glucoside]、异鼠李素-3-O-(6”-没食子酰基)-葡糖苷 [isorhamnetin-3-O- ( 6”-O-galloyl ) -glucoside] 、山奈酚-3- 葡糖苷(kaempferol-3-O-glucoside)、异鼠李素-3-葡糖苷(isorhamnetin-3-O-glucoside)和山奈酚-丙二酰葡糖苷(kaempferol-malonyl-glucoside)。此外,查耳酮在黄色的栽培品种‘黄金轮’和牡丹芍药组间杂交种‘伊藤杂种’中首次被检测到。其化学结构为查耳酮-2’-葡糖苷(chalcononaringenin 2’-O-glucoside),它是花瓣表现出黄色的主要色素,它与黄色牡丹野生种‘滇牡丹’(P. delavayi Franchet)花瓣中主要黄色色素成分一致。 通过对所有芍药野生种和栽培品种的色素分析,研究发现花青素是芍药花瓣中主要的色素,其中Pn3G5G 是花瓣中含量最高的花青素苷,其次为Cy3G5G。3G 型糖苷仅在少数品种中检测出来。此外,黄酮醇是芍药花瓣中重要的辅助色素。山奈酚苷是花瓣中含量最高的黄酮醇类,其次是栎精。 多元线性回归分析的结果表明,芍药花色的形成主要与花瓣中Pn3G5G、Cy3G5G 和Pg3G5G 的含量及总花青素量(TA)有关。根据8 种花青素结构与花色组成,将国内的野生种和大部分品种进行了化学分类:所有样本聚成3 大类,聚类后的树状图与其花色、花色素组成数据相一致,直观反映了野生种和栽培品种花色形成的化学背景和表型相似性程度。 芍药成色机理和化学分类的初步研究,对芍药新花色育种具有重要意义:芍药鲜红色花的育种中,育种亲本应具有高的Cy3G 含量、低的辅助色素效应指数。选育深紫色花或紫黑色花的品种,亲本应具有高的Pn3G5G 含量和低的Pg3G5G 含量。