172 resultados para 1,4-Hydroxyketones
Resumo:
Two new compounds, [CoL2(H2O)(2)](NO3)(2). 8H(2)O (1) and [CoL(H2O)(2)(CH3CO2)(2)]. H2O (2), were obtained from self-assembly of the corresponding metal salts with 1,1'-(1,4-butanediyl)bis(benzimidazole) (L). In 1, each cobalt ion is coordinated to four nitrogen atoms from four molecules of L, and to two water molecules. Metal ions are bridged by L ligands to form infinite (4, 4) networks that contain 44-membered rings. The (4, 4) networks of 1 stack in a parallel fashion, resulting in the formation of large channels in the material. In 2, each cobalt ion is coordinated to two N atoms from two L molecules, two water molecules and two carboxylate O atoms from two acetate anions. Each L molecule is coordinated to two cobalt ions, acting as a bridging ligand as in 1. The bridged cobalt ions form an infinite zigzag chain structure.
Resumo:
The cyclization of cis-1,4 polybutadiene in various solvents (mesitylene,xylene, toluene,benzene and cyclohexane) with the catalyst composed of CH2=CHCH2Cl-AlEt2Cl was studied. The infrared spectra of the cyclized products were investigated. It was shown that the products produced in cyclohexane and mesitylene have infrared spectra identical with those of the original cis-1,4-polybutadiene and the products obtained in other aromatics have infrared spectra different from each other and distinguishing with those of the parent cis-1,4 polybutadiene. The analyses of infrared spectra came to the conclusion that the molecules of aromatic solvent participate in cyclization of cis-1,4 polybutadiene at the given condition. A possible reaction scheme involving an electrophilic substitution of carbonium ions for Ar-H of aromatic solvents was proposed. Some experimental facts were explained with great satisfaction on the basis of the above mechanism.
Resumo:
Three new compounds, [ZnL1.5(H2O)(SO4)]. 6H(2)O 1, [ZnL1.5(H2O)(2)][NO3](2). 2H(2)O 2 and [CdL1.5(H2O)(2)(SO4)]. 4H(2)O 3 were obtained from self-assembly of the corresponding metal salts with 1,1'-(1,4-butanediyl)bis(imidazole) (L). In both 1 and 2 zinc ion is five-co-ordinated, showing a less-common trigonal bipyramidal co-ordination polyhedron, while cadmium ion of 3 is six-co-ordinated with a common octahedral arrangement. The sulfate ions of 1 and 3 are co-ordinated, however the nitrate ions of 2 are not. Each of the three compounds is composed of a (6, 3) network with the hexagonal smallest circuit containing six metal ions and six L; each L is co-ordinated to two metal ions, acting as a bridging ligand. In 1 the 2-D sheet of (6, 3) networks is interpenetrated in an inclined mode by symmetry related, identical sheets to give an interlocked 3-D structure, while the (6, 3) networks of both 2 and 3 stack in a parallel fashion to construct frameworks having channels.
Resumo:
以烯丙基氯 一氯二乙基铝 (CH2 CHCH2 Cl AlEt2 Cl)催化体系研究了顺 1 ,4 聚丁二烯在不同溶剂(三甲苯、二甲苯、甲苯、苯和环己烷 )中的环化反应 .结合环化产物红外光谱的测定 ,提出芳烃溶剂分子经受阳碳离子亲电取代作用而参与环化的机理 ,以此解释了若干实验事实 ,并对已有文献报道进行了讨论.
Resumo:
为研究生物活性西洋参多糖的性质 ,采取热水提取乙醇分级沉淀、葡聚糖凝胶分离等手段从西洋参根中分得 4个纯多糖 (PPQI- 1~ 4)。基质辅助激光解吸电离质谱 (MAL DI- MS)测定分子量 ,乙酰化衍生结合GC分析测定糖组成。甲基化结合 GC- MS分析测定糖苷键连接位点。结果表明 ,这 4个多糖化合物都是杂多糖 ,分别由不同比例的阿拉伯糖、半乳糖、葡萄糖、糖醛酸组成 ,糖醛酸含量为 30 %~ 6 0 % ,分子量范围 2~ 7万
Resumo:
A novel morphology of TPBD crystals consisting of a three-dimensional interlaced network was obtained by casting the self-seeded 0.1% benzene solution onto carbon-boated mica. Both the transmission electron microscopy (TEM) and electron diffraction (ED) analyses showed that the network was composed of well-developed lamellae. It is imagined this interesting morphology is the results of asymmetrical growth of the original TPBD lamellae on the amorphous interface, and that their preferred orientation changed when they encountered each other.
Resumo:
By using different catalyst systems, two trans-1,4-polybutadiene (TPBD) samples with different tr trans-content and molecular weight were synthesized. The phase transition of two samples from monoclinic form to hexagonal phase was revealed by differential calorimeter scanning and X-ray, respectively. The small-angle X-ray scattering measurements showed the remarkable discrepancy of phase transition and melting point between the two samples was attributed to the different lamellar thickness of crystals: The crystals with different crystalline morphology and lamellar thickness were developed by casting different concentration TPBD solutions. Transmission electron microscopy morphology observations proved that annealing the specimen at the temperature above the phase transition point for different times resulted in the different lamellae thickening of monoclinic form. It means that annealing the TPBD in its hexagonal phase will also slightly favor the increase of both the phase transition temperature and melting point of hexagonal phase. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
trans-1,4-Polybutadiene (PTBD) was synthesized by rare earth catalyst system, The effect of electron radiation on phase transition from monoclinic phase to hexagonal phase was observed by TEM, Electron diffraction patterns of monoclinic phase, hexagonal phase and two coexistent phases were recorded, The mechanism of phase transition was also discussed in this paper.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
比较稀土催聚1,4—聚丁二烯橡胶和几种不同温度下聚合的镍催聚1,4—聚丁二烯橡胶的σy 和[η],从中得知链缠结的变化是影响σy 和[η]以及 τ的主要原因,而微观结构的变化可能是影响链缠结的因素之一,1,4—聚丁二烯橡胶的加工性能与链缠结有关。
Resumo:
The compatibilizing effect and mechanism of compatibilization of the diblock copolymer polystyrene-block-poly(4-vinylpyridine) P(S-b-4VPy) on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/chlorinated polyethylene (CPE) were studied by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), mechanical properties and FTIR measurements. The block copolymer was synthesized by sequential anionic polymerization and melt-blended with PPO and CPE. The results show that the P(S-b-4VPy) added acts as an effective compatibilizer, located at the interface between the PPO and the CPE phase, reducing the interfacial tension, and improving the interfacial adhesion. The tensile strength and modulus of all blends increase with P(S-b-4VPy) content, whereas the elongation at break increases for PPO-rich blends, but decreases for CPE-rich blends. The polystyrene block of the diblock copolymer is compatible with PPO, and the poly(4-vinylpyridine) block and CPE are partially miscible.
Resumo:
用两相滴定法测定异丙基膦酸单(1-己基-4-乙基)辛酯(PT-2,HL)在水中的溶解度S,在水中的解离常数K在水-正庚烷中的分配常数Kd及二聚常数K2,利用SOLWR计算程序,简单快速地处理两相滴定数据,得到结果为:S=3.68×10-5mol/L,pKa=5.49,logK2=4.67,logKd=2.67(25±0.5℃)