721 resultados para Yb:Y2O3
Resumo:
Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 degrees C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 Wt-% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating.
Resumo:
The selective separation of Y from yttrium solution containing small heavy rare earth (HRE) impurities (Ho, Er, Tm, Yb, Lu) by liquid-liquid extraction using CA-100 in the presence of a water-soluble complexing agent of ethylenediaminetetraacetic acid (EDTA) was experimentally studied at 298K. Experiments were carried Out in two feeds, Feed-I: [RE](f) = 4.94 x 10(-3) M, Y = 98.5%, HRE (Ho, Er, Tm, Yb, Lu) = 1.5%; Feed-II: [RE](f) = 4.94 x 10(-3) M, Y = 99.9%, HRE (Ho, Er, Tm, Yb, Lu) = 0.1%, as a function of equilibrium pH (pH(eq)), the concentration ratio of [EDTA]:[HRE impurities]. It was shown that the extraction of HRE in the presence of EDTA was suppressed when compared to that of Y because of the masking effect, while the selective extraction of Y was enhanced and the separation factors increased to maximum at appropriate condition for Feed-I: Y/Ho = 1.53, Y/Er = 3.09, Y/Tm = 5.61, Y/Yb = 12.04, Y/Lu = 27.51 at pH 4.37 and [EDTA]:[HRE impurities] = 4: 1, for Feed-II: Y/Ho = 1.32, Y/Er = 1.91, Y/Tm = 2.00, Y/Yb = 3.05, Y/Lu = 3.33 at pH 4.42 and [EDTA]: [HRE impurities] = 8:1. The separation and purification of Y by this method was discussed.
Resumo:
Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y2O3 + ZrO2) and lanthanum zirconate (LZ, La2Zr2O7) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 degrees C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 mu m have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 mu m, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 mu m, the failure mainly occurs at the interface of the YSZ layer and the bond coat.
Resumo:
An efficient cathode NaCl/Ca/Al used to improve the performance of organic light-emitting devices (OLEDs) was reported. Standard NM-bis(1-naphthyl)-NAP-diphenyl-1,1' biphenyl 4,4'-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq(3)) devices with NaCl/Ca/Al cathode showed dramatically enhanced electroluminescent (EL) efficiency. A power efficiency of 4.6 lm/W was obtained for OLEDs with 2 nm of NaCl and 10 nm of Ca, which is much higher than 2.0 lm/W, 3.1 lm/W, 2.1 lm/ W and 3.6 lm/W in devices using, respectively, the LiF (1 nm)/Al, LiF (1 nm)/Ca (10 nm)/Al, Ca (10 nm)/Al and NaCl (2 nm)/ Al cathodes. The investigation of the electron injection in electron-only devices indicates that the utilization of the NaCl/Ca/Al cathode substantially enhances the electron injection current, which in case of OLEDs leads to the improvement of the brightness and efficiency.
Resumo:
The synergistic extraction of rare earths (La, Nd, Gd, Y and Yb) with a mixture of 2-ethylhexyl 2-ethylhexylphosphonate (EHEHPA) (HA) and trialkylphosphine oxide (Cyanex 923) (B) from a hydrochloride medium was investigated. The mixed system significantly enhances the extraction efficiency for lighter lanthanides and the synergistic enhancement coefficients for La (4.52), Nd (3.35), Gd (2.08), Y (1.31) and Yb (1.08) decrease with decreasing ionic radius of the rare earths. The extraction equilibrium of La, Nd and Gd indicate that La and Nd were extracted as MA(3)(.)B, whereas Gd was extracted as Gd(OH)A(2)(HA)(2)B-.. The equilibrium constants, thermodynamic functions such as Delta G, Delta H and Delta S and formation constants of the extracted species were determined. The stripping properties were also studied.
Resumo:
The extraction and stripping of ytterbium (III) from sulfuric acid medium using Cyanex 923 in heptane solution was investigated. The effects of extractant concentration, pH and sulfate ion as well as stripping agents, acidity and temperature on the extraction and stripping were studied. The equilibrium constants and thermodynamic parameters, such as Delta H (10.76 kJ(.)mol(-1)), Delta G (-79.26 kJ(.)mol(-1)) and Delta S (292.41 J(.)K(-1.)mol(-1)), were calculated. The extraction mechanism and the complex species extracted were determined by slope analysis and FrIR spectra. Furthermore, it was found that the extraction of Yb (III) from sulfuric acid medium by Cyanex 923 increased with pH, concentration of SO42-, HSO4-, and extractant concentration, and approximately a quantitative extraction of Yb (III) was achieved at an equilibrium pH near 3.0, and the extracted complex was YbSO4(HSO4)(.)2Cyanex923((o)).
Resumo:
The target DNA was immobilized successfully on gold colloid particles associated with a cysteamine monolayer on gold electrode surface. Self-assembly of colloidal An onto a cysteamine modified gold electrode can enlarge the electrode surface area and enhance greatly the amount of immobilized single stranded DNA (ssDNA). The electrontransfer processes of [Fe(CN)(6)](4)-/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of the target DNA immobilization, which was investigated by impedance spectroscopy. Then single stranded target DNA immobilized on the gold electrode hybridized with the silver nanoparticle-oligonucleotide DNA probe, followed by the release of the silver metal atoms anchored on the hybrids by oxidative metal dissolution, and the indirect determination of the released solubilized Ag-1 ions by anodic stripping voltammetry (ASV) at a carbon fiber microelectrode. The results show that this method has good correlation for DNA detection in the range of 10-800 pmol/1 and allows the detection level as low as 5 pmol/1 of the target oligonucleotides.
Resumo:
A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subsequent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolution of them in an acidic solution and the indirect determination of the dissolved Ag+ ions by anodic stripping voltammetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample. The method was evaluated by means of a noncompetitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0.2 ng/ mL. The high performance of the method is related to the sensitive ASV determination of silver(I) at a carbon fiber microelectrode and to the release of a large number of Ag+ ions from each silver shell anchored on the analyte(goat IgG).
Resumo:
Nanocrystalline Y2O3:Eu3+ phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped Eu3+ showed its characteristic emission in crystalline Y2O3 phosphor films due to an efficient energy transfer from Y2O3 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+ were determined to be 5 mol%.
Resumo:
In this paper, a calix[4]arene derivative, 5,11,17,23-butyl-25,26,27,28-tetra-(ethanoxycarbonyl)-methoxy-calix[4]arene (L), is investigated as a host to recognize alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) at the interface between two immiscible electrolyte solutions (ITIES). Well-defined cyclic voltammograms are obtained at the micro- and nano-water \ 1,2-dichloroethane (W \ DCE) interfaces supported at micro- and nano-pipets.
Resumo:
The reduction of Eu3+ to Eu2+ in air has been observed in a silicate matrix for the first time in BaMgSiO4:Eu prepared by high-temperature solid-state reaction. Emission and excitation spectra were employed to detect the presence of Eu2+ ions in the compound and this reduction was explained by a charge compensation model proposed previously. In BaMgSiO4 : Eu2+, Eu2+ ions occupy three different lattice sites by substitution for Ba2+ ions. Eu2+ ions on Ba(1) and Ba(2) sites gave emissions at about 500 nm while that on Ba(3) site showed an emission band at 398 nm. All the emissions of Eu2+ ions in BaMgSiO4 : Eu2+ were not quenched at room temperature.
Resumo:
Compounds of Sr4Al14O15: Eu were prepared in air atmosphere by high temperature solid state reaction. The reduction of Eu3+--> Eu2+ was firstly observed in the aluminate phosphor of Sr4Al14O25: Eu synthesized in air condition. This made aluminate a new family and Sr4Al14O25 a new member of compounds in which Eu3+ ion could be reduced to Eu2+ form when fired in air atmosphere. The reduction of Eu3+ --> Eu2+ in Sr4Al14O25: Eu was explained by means of a charge compensation model. Experiments based on the model were designed and carried out, and the results supported this model.
Resumo:
A series of rare earth ions doped CdSiO3:RE3+(RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) multi-color long-lasting phosphorescence phosphors are prepared by the conventional high-temperature solid-state method. The results of XRD measurement indicate that the products fired under 1050degreesC for 3 h have a good crystallization without any detectable amount of impurity phase. Rare earth ions doped CdSiO3 phosphors possess excellent luminescence properties. When rare earth ions such as Y3+, La3+, Gd3+, Lu3+, Ce3+, Nd3+, Ho3+, Er3+, Tm3+ and Yb3+ are introduced into the CdSiO3 host, one broadband centered at about 420 nm resulting from traps can be observed. In the case of other earth ions such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, their characteristic line emitting as well as the similar to420 nm broadband luminescence can be obtained. The mixture of their characteristic line emitting with the similar to420 nm broadband luminescence results in various afterglow color.
Resumo:
利用高温固相法合成了系列稀土离子掺杂的CdSiO_3:RE~(3+)(RE=Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)多光色长余辉磷光体。XRD分析结果表明在1050℃下烧结3小时的产物为单相。稀土掺杂CdSiO_3磷光体具有良好的发光性能。引入Y~(3+),La~(3+),Gd~(3+),Lu~(3+)以及Ce~(3+),Nd~(3+),Ho~(3+),Er~(3+),Tm~(3+),Yb~(3+)可获得一个最大发射中心位于420 nm附近的缺陷发光宽带,引入 Pr~(3+),Sm~(3+),Eu~(3+),Tb~(3+),Dy~(3+)时,除了产生约420 nm的蓝紫色缺陷发光外同时产生很强的稀土离子特征发光,这两种发光混合导致不同的余辉颜色。
Resumo:
Three new cage-like mixed-valent polyoxovanadates [Ni(1,10'-phen)(3)](2)[V10O26] 1, [Zn(2,2'-biPY)(3)](3)[V15O36Cl](.)3H(2)O (2) and [Co(2,2'-biPY)(3)](3)[V15O36Cl](.)3H(2)O (3) have been hydrothermally synthesized for the first time and characterized by elemental analyses, IR, EPR spectra, TG analyses and single crystal X-ray diffraction. The polyoxoanion of I exhibits an interesting empty ellipsoidal [V-2(IV) V-8(V) O-26](4-) 'host' shell, while the oxo vanadium clusters of 2 and 3 possess a spherical [V-8(IV) V-7(V) O36Cl](6-) cage with a Cl- ion encapsulated. The structure-directing role of organic templates (1,10'-phen and 2,2'-bipy) on the formation of the polyoxoanion structures is discussed.