614 resultados para POLY(AMIDOAMINE) DENDRIMERS
Resumo:
The crystallization process and morphology of poly(aryl ether ether ketone ketone) containing meta-phenyl links (PEEKmK) have been investigated by transmission electron microscopy and electron diffraction. The results indicate that the thin films of PEEKmK isothermally crystallized from both the glassy state and the melt at the temperature range of 180 similar to 250 degrees C consist of two kinds of morphological forms, i. e. large (order of mu m), flat-on single crystals and narrow, lath-like, edge-on lamellae, The latter consists of the spherulites. Meanwhile, the growing process of the two kinds of morphological forms has been discussed.
Resumo:
A new kind of amphiphilic polyether dendrimer bearing eight alkyl chains at the periphery were synthesized step by step using the convergent method. Their structures were confirmed by FT-IR spectra, H-1 NMR spectra and mass spectra etc. The pi-A isotherms, hysteresis and molecular area-time curves at air water interface were reported. These results showed that they could form stable monolayers at water surface.
Resumo:
Structure changes and charge transfer in the doping process of poly(2,5-dimethylaniline) (PDMA) were studied by NMR technique. It was shown that not only the polymer chain but also the hydrogen atoms and methyl groups on the aromatic rings were involved in the charge transfer process. A ''four ring BQ derivatives'' model was proposed to explain the NMR results.
Resumo:
The evolution of crystallinity and polymorphism during hot-drawing of amorphous poly(ether ether ketone ketone) (PEEKK) as a function of strain rate, draw ratio, and temperature was investigated. In modification I, the competition of chain extension and molecular alignment is responsible for the strain rate and temperature dependence. Modification II crystallization is basically controlled by chain extension during stretching. The former can be transformed into the latter via relaxation during stretching or annealing at elevated temperature.
Resumo:
The nonisothermal crystallization behavior and melting process of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide) (PEG) diblock copolymer in which the weight fraction of the PCL block is 0.80 has been studied by using differential scanning calorimetry (DSC). Only the PCL block is crystallizable, the PEO block with 0.20 weight fraction cannot crystallize. The kinetics of the PCL/PEO diblock copolymer under nonisothermal crystallization conditions has been analyzed by Ozawa's equation. The experimental data shows no agreement with Ozawa's theoretical predictions in the whole crystallization process, especially in the later stage. A parameter, kinetic crystallinity, is used to characterize the crystallizability of the PCL/PEO diblock copolymer. The amorphous and microphase separating PEO block has a great influence on the crystallization of the PCL block. It bonds chemically with the PCL block, reduces crystallization entropy, and provides nucleating sites for the PCL block crystallization. The existence of the PEO block leads to the occurrence of the two melting peaks of the PCL/PEO diblock copolymer during melting process after nonisothermal crystallization. The comparison of nonisothermal crystallization of the PCL/PEO diblock copolymer, PCL/PEO blend, and PCL and PEO homopolymers has been made. It showed a lower crystallinity of the PCL/PEO diblock copolymer than that of others and a faster crystallization rate of the PCL/PEO diblock copolymer than that of the PCL homopolymer, but a slower crystallization rate than that of the PCL/PEO blend. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Poly(ether diphenyl ether ketone) (PEDEK) synthesized by the nucleophilic route has the following chemical structure: [GRAPHICS] At some given temperatures for a given time isothermally crystallized PEDEK sample exhibits two endothermic peaks which are similar to PEEK and PEEKK The melting behavior of PEDEK crystallized from the glassy state is investigated through differential scanning calorimeter (DSC). We consider that the high-melting peak is related to the perfect crystals and the low-melting peak is associated with a few imperfect crystals. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Interpenetrating polymer networks (IPNs) have been synthesized from prepolymers that form miscible blends. All IPNs made from polyacrylate ((polyethylene glycol diacrylate), PEGDA) and epoxy (diglycidyl ether of bisphenol A, DGEBA) can be made in phase separated states by incorporating crosslinks. However, blends of these prepolymers, having a negative Flory-Huggins interaction parameter, are highly miscible. This indicates that formation of IPNs favours phase separation relative to blends. The microphase separation characteristics in the PEGDA/DGEBA IPNs were determined using smalt-angle X-ray scattering (SAXS). The Debye-Bueche and Guinier methods were used to calculate the correlation lengths of the segregated phases existing in the PEGDA/DGEBA IPNs. The results from SAXS showed that the size of the phase segregation zones changed with composition from about 50 to 100 Angstrom.
Resumo:
The crystal structure of poly(aryl ether biphenyl ether ketone ketone) (PEDEKK) was determined to comprise a two-chain orthorhombic unit cell with dimensions a 0.778 nm, b = 0.606 nm and c = 2.375 nm by using wide-angle X-ray diffraction (WAXD). According to the orthorhombic system, the 12 reflections of this polymer were indexed. The crystallite size increases with increasing the crystallization temperature. The results of the degree of crystallinity (W-c,W-x) calculated from WAXD were compatible with those from density (W-c,W-d) and calorimetry (W-c,W-h) measurements.
Resumo:
The synthesis and characterization of a series of poly(amic methyl ester)s from five aromatic dianhydrides and a diamine, 4,4'-oxydianiline (ODA), are described. These poly(amic ester)s are obtained by the low-temperature polycondensation from dianhydrides derived diester-diacyl chlorides and ODA in DMAc solution with the inherent viscosities in the 0.5-0.9 dL/g range. These precursors are readily soluble in aprotic solvents. A detailed thermal study of the imidization process is presented, based on dynamic and isothermal TGA measurements, FTIR spectroscopy, and dynamic mechanical analysis. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Two unfractionated samples of phenolphthalein poly( aryl ether sulfone) (PES-C) were characterized in CHCl3 at 25 degrees C by applying a recently developed laser light-scattering (LLS) procedure. The Laplace inversion of precisely measured intensity-intensity time correlation function lead us first to an estimate of the characteristic line-width distribution G(Gamma) and then to the translational diffusion coefficient distribution G(D). A combination of static and dynamic LLS results enabled us to determine D = (2.69 x 10(-4))M(-0.553), which agrees with the calibration of D = (2.45 x 10(-4))M(-0.55) previously established by a set of narrowly distributed PES-C samples. Using this newly obtained scaling between D and M, we were able to convert G(D) into a differential weight distribution f(w)(M) for the two PES-C samples. The weight-average molecular weights calculated from f(w)(M) are comparable to that obtained directly from static LLS. Our results showed that using two broadly distributed samples instead of a set of narrowly distributed samples have provided not only similar final results, but also a more practical method for the PES-C characterization. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Bright blue polymer light-emitting diodes have been fabricated by using the poly(p-phenylenevinylene)-based copolymers with 10 C long aliphatic chains as the electroluminescent layers, PBD in PMMA and Alq(3) as the electron-transporting layers, and aluminum as the cathode. The multilayer structure devices show 190 cd/m(2) light-emitting brightness at 460 nm, 15 V turn-on vol- tage. It is found that the intensities of photoluminescence and electroluminescence (EL) increase with increasing aliphatic chain length, the EL intensity and operation stability of these polymer light-emitting diodes can be improved by reasonable design of the structure.
Resumo:
Blends of a poly(ether sulfone) (PES) and a polycarbonate (PC) were prepared by melt-mixing and were studied by tensile tests, differential scanning calorimetry, dynamic mechanical analysis, density measurements and transmission electron microscopy (TEM). The blends were found to be two-phase systems and an interfacial layer was presumed to be formed between two phases, which was verified by TEM. A synergism of elongation at break and tensile modulus was shown in PES/PC blends. The effects of the crosshead speed on the mechanical properties were discussed for blends with different PES/PC weight ratios.
Resumo:
A Series of poly(aryl ether ether ketone ketone) containing meta-phenyl link were synthesized, the general properties were studied by DSC, stretch, impact, etc.. The results indicated that with the raising of meta linkage monomer fractions, the glass transition point decreased, the melting temperature decreased at first, and then disappeared, but for all-meta-linked polymer, T-m appeared once more. And this kind of polymer had good stretch and impact resistance performance.
Resumo:
Blends of poly (butylene terephthalate) (PBT) and epoxided ethylene-propylene-diene terpolymer (EEPDM) were prepared. Their mechanical properties and morphology were studied by Izod impact test machine and scanning electronic microscope respectively, It was found that the notched Izod impact strength of blend PBT/EEPDM was as about 23 times as that of pure PET and about 10 times as that of blend PBT/EPDM at room temperature, The dispersed rubber particles were much smaller and the phase boundary was more blurred in blend PBT/EEPDM than in blend PBT/EPDM. The toughness of blend PBT/EEPDM was much more better than that of blend PET and PBT/EPDM, which was in good agreement with the difference between their morphologies.
Resumo:
The rheological properties of the novel engineering thermoplastic phenophthalein poly(ether ether ketone) (PEK-C) have been investigated using both a rotational and a capillary rheometer. The dependence of the viscosity on the shear rate and temperature was obtained. The activation energy was evaluated both from the Arrhenius and the Williams-Landel-Ferry (WLF) equation. An estimate for the proper E(eta) (dependent only on the chemical structure of the polymer) has been found from the WLF equation at temperatures about T-g + 200 degrees C. Measurements of the die swell have been performed. The first normal stress differences were evaluated from the die swell results and compared with the values obtained from the rotational rheometer at low shear rates.