667 resultados para 238
Resumo:
It was explored by density functional calculations that exchanged La or P species exert great influence on the local Al sites as well as on the adjacent exchanged species. In partially exchanged La- or P/H-ZSM-5 zeolite, some of the Al sites will fall off from the zeolite framework even more easily than in H-form ZSM-5, consistent with our XRF experiments. However, when exchanged by both La and P species, Al at either of the two exchanged sites shows better stability compared to H-from. zeolite. La and P species will interact strongly with each other, as evidenced by the charge donation process and the shortening of P-O-1 bond length. It was just the cooperation of La and P species that enabled RSCC catalysts worked normally under severe conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A new poly(fullerene oxide) thin film material has been fabricated by thermal activation and electron bombardment on hexanitro[60]fullerene (HNF) film deposited on a An substrate, all under vacuum conditions. The reaction products in the polymerization process are analyzed by XPS, UPS, IR, TGA-MS and LDI-MS techniques. It is found that the main effect of thermal and radiation treatments is to induce cleavage of -NO bonds from HNF molecules resulted in the release of nitric oxide gas and the formation of fullerene-bound oxyradicals, C-60-C-6. Spectroscopic evidence strongly suggests that rearrangement of fullerenic nitro moieties into nitrito groups is involved in the HNF decomposition process prior to the generation of reactive oxyradical intermediates. Consequently, the intermolecular coupling reaction of these oxyradicals leads to carbon polymer networks containing oxygen-bridged fullerenes. The thermally generated polymeric thin film is stable up to 900 K. Electron bombardment is also effective in both the decomposition of -NO2 groups and the removal of -OH groups present in HNF films. UV irradiation at 365 nm alone is shown to be not as efficient for the polymer formation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H-2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.
Resumo:
Two concise synthetic routes, being different in the glycosylation sequence, toward ginsenoside Ro (1) are developed. These syntheses feature the elaboration of the glucuronide residue at a later stage via the TEMPO-mediated selective oxidation and the installation of AZMB as a benzoylic neighboring participating group capable of being selectively removed afterward.
Resumo:
A-type zeolite membranes were prepared on the nonporous metal supports by using electrophoretic technique. The as-synthesized membranes were characterized by XRD and SEM. The effect of the applied potential on the formation of the A-type zeolite membrane was investigated, and the formation mechanism of zeolite membrane in the electric field was discussed. The results showed that the negative charged zeolite particles could migrate to the anode metal surface homogenously and rapidly under the action of the applied electric field, consequently formed uniform and dense membranes in short time. The applied potential had great effect on the membrane formation, and more uniform and denser zeolite membranes were prepared on the nonporous metal supports with 1 V potential.