529 resultados para GOLD CATALYST
Resumo:
The effect of the amount of the catalyst FeCl3, used during the direct oxidation polymerization, on the structure and properties of the obtained poly(3-dodecylthiophene) (P3DDT) was investigated in this paper. Such measurements as gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, thermal analysis, X-ray diffraction, infrared spectroscopy (FTIR) and ultraviolet-visible (W-vis) spectroscopy were applied. It is found that a suitable addition of FeCl3 can contribute to generate a P3DDT with greater percentage of head-to-tail head-to-tail (HT-HT) linkages, which are generally favored. The reduction of the other linkage defects helps to lengthen conjugation length, thus leading to more orderly chain packing. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A new kind of inorganic self-assembled monolayer (SAM) was prepared by spontaneous adsorption of polyoxometalate anion, AsMo11VO404-, onto a gold surface from acidic aqueous solution. The adsorption process, structure, and electrochemical properties of the AsMo11VO404- SAM were investigated by quartz crystal microbalance (QCM), electrochemistry, and scanning tunneling microscopy (STM). The QCM data suggested that the self-assembling process could be described in terms of the Langmuir adsorption model, providing the value of the free energy of adsorption at -20 KJ mol(-1). The maximum surface coverage of the AsMo11VO404- SAM on gold surface was determined from the QCM data to be 1.7 x 10(-10) mol cm(-2), corresponding to a close-packed monolayer of AsMo11VO404- anion. The analysis of the voltammograms of the AsMo11VO404- SAM on gold electrode showed three pairs of reversible peaks with an equal surface coverage of 1.78 x 10(-10) mol cm(-2) for each of the peaks, and the value was agreed well with the QCM data. In-situ STM image demonstrated that the AsMo11VO404- SAM was very uniform and no aggregates or multilayer could be observed. Furthermore, the high-resolution STM images revealed that the AsMo11VO404- SAM on Au(lll) surface was composed of square unit cells with a lattice space of 10-11 Angstrom at +0.7 V (vs Ag\AgCl). The value was quite close to the diameter of AsMo11VO404- anion obtained from X-ray crystallographic study. The surface coverage of the AsMo11VO404- SAM on gold electrode estimated from the STM image was around 1.8 x 10(-10) mol cm(-2), which was consistent with the QCM and electrochemical results.
Resumo:
The catalytic behaviors of a novel liquid acid catalyst (composed of heteropolyacid and acetic acid) for alkylation of isobutane with butene was investigated. As a solvent acetic acid had a synergistic effect. It enhanced the acid strength of HPA and its stability. The conditions for the formation of the catalytically active phase were studied systematically. The content of crystal water of HPA and the quantity of solvent affect the formation of active phase and the catalytic activity. Catalytically active phase consists of HPA, acetic acid and hydrocarbon produced from the reaction, as well as traces of water from the crystal water of HPA. This catalyst system is comparable to the sulfuric acid in catalytic activity.
Resumo:
A novel liquid acid catalyst, composed of heteropolyacid and acetic acid for the alkylation of isobutane with butenes is reported. The conditions for the formation of catalytic active phase as well as its catalytic behaviors in alkylation of isobutane with butenes have been studied. It was found that acetic acid, as a solvent, exerts a synergistic effect on the acid strength of heteropolyacid, and the contents of crystal water in HPAs have influence over the formation of active phase and the catalytic activity. This novel catalyst is comparable to the sulfuric acid in catalytic activity.
Resumo:
A novel method is employed for the simultaneous determination of both the calibration constant of an electrochemical quartz crystal microbalance (EQCM) and the active surface area of a polycrystalline gold electrode. A gold electrode: is immersed into a 1 mM KI/1 M H2SO4 solution and on which forms a neutral monolayer. The adsorbed iodine can then be completely oxidized into IO3-. The active surface area of a gold electrode can be obtained from the net electrolytic charge of the oxidation process, and the calibration constant in the EQCM can be calculated from the corresponding frequency shift. The result shows that this method is simple, convenient and valid. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
To obtain a novel support with practical value for metallocene catalyst (eta -C5H5)TiCl3 (CpTiCl3), poly (styrene-co-4-vinylpyridine) /SiO2 nanoscale hybrid material (SrP/SiO2) was firstly produced as support. After pretreatment by methylaluminoxane (MAO), the hybrid materials reacted with CpTiCl3. The results from SAXS, SEM and TEM indicated the morphology and structure of organic/inorganic hybrid materials, and the size of inorganic particle in hybrid was nanoscale. The results from IR and XPS showed that there were two possible cationic active species in the hybrid-supported catalyst, the polymerization results of styrene proved this possibility.
Resumo:
Tridentate ligand[(2,6-ArN=C(Me))(2)C5H3N](Ar=4-allyl-2,6-(i-Pr)(2)C6H3)(4)which contains allyl groups on each aryl ring was ready prepared and reacted with FeCl2. 4H(2)O to give the precatalyst [(2,6-ArN=C(CH3))(2)C5H3N]. FeCl2 (5). Compounds 2-5 were characterized by H-1 NMR, EI-MS,and IR. The complex 5 which was actived by methylaluminoxane(MAO) exhibits high activity for ethylene polymerization [1.9 x 10(6) g pE.(mol Fe . h)(-1) at 0 degreesC]. It was showed that the activity was decreased with increasing temperature and the polymer product was highly linear PE with (M) over bar (eta) varying from 50000 to 260000.
Resumo:
Monolayer assembly of 2-mercapto-3-n-octylthiophene (MOT) having a relatively large headgroup onto gold surface from its dilute ethanolic solutions has been investigated by electrochemistry. An electrochemical capacitance measurement on the permeability of the monolayer to aqueous ions, as compared with its alkanethiol counterpart [CH3(CH2)(9)SH (DT)] with a similar molecular length, shows that the self-assembled monolayers (SAMs) of MOT can be penetrated by aqueous ions to some extent. Furthermore, organic molecular probes, such as dopamine, can sufficiently diffuse into the monolayer because a diffusion-limited current peak is observed when the dopamine oxidation reaction takes place, showing that the monolayer is loosely packed or dominated by defects. But the results of electron transfer to aqueous redox probes (including voltammetry in Fe(CN)(6)(3-/4-) solutions and electrochemical ac impedance spectrum) confirm that the monolayer can passivate the gold electrode surface effectively for its very low ratio of pinhole defects. Moreover, a heterogeneous patching process involving addition of the surfactants into the SAMs provides a mixed or hybrid membrane that has superior passivating properties. These studies show that the MOT monolayer on the electrode can provide an excellent barrier for hydrated ionic probe penetration but cannot resist the organic species penetration effectively. The unusual properties of the SAMs are attributed to the entity of the relatively large thiophene moiety between the carbon chain and the thiol group.
Resumo:
A highly alternative copolymer of carbon dioxide and propylene oxide was obtained using a lanthanide trichloroacetates-based ternary catalyst. The rare-earth compound in the ternary catalyst was critical to dramatically raise the yield and molecular weight of the copolymer in addition to maintaining a high alternating ratio of the copolymer. (C) 2001 John Wiley & Sons, Inc.
Resumo:
In this presentation, a reverse micelle technique was described to create colloid gold nanoparticles and their self-organization into superlattices. Gold nanoparticles were prepared by the reduction of HAuCL4 in CTAB/octane + 1-butanol/H2O reverse micelle system using NaBH4 as reducing agent. Dodecanethiol (C12H25SH) was used to passivate the gold nanoparticles immediately after formation of the gold colloid. After re-dispersing in toluene under ultrasonication, a supernatant containing nearly monodispersed dodecanethiol-capped gold nanoparticles was obtained. Self-organization of the gold nanoparticles into 1D, 2D and 3D superlattices was observed on the carbon-coated copper grid by TEM. UV-vis absorption spectra were also used to characterize the gold colloids with and without dodecanethiol capping. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.
Resumo:
A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.
Resumo:
The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Conjugated bisthioester 1 was synthesized applying Sonogashira coupling reactions. Using self-assembly in combination with nanoparticles deposition techniques, we developed a novel method to fabricate a "gold electrode-molecular wire monolayers-gold nanoparticles" sandwich-like structure. Rapid electron propagation through this sandwich-like structure was observed by cyclic voltammetry and ac impedance measurements.
Resumo:
A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.