566 resultados para CATALYTIC ETHENE POLYMERIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences has a long history in the R&D of catalysts and catalytic processes for petroleum and natural gas conversions in China. In this paper, results and features of some commercialized petrochemical catalysts and processes as well as newly developed processes for natural gas conversion in the pilot-plant stage are described. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salicylaldehyde (selectivity = 57.3% at a conversion = 73.8%) was prepared for the first time by the oxidation of o-cresol in a single step using impregnated CuCo/C catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare-earth metals were hydrogenated in the presence of TiCl4 catalyst in tetrahydrofuran (THF) at 45 degreesC under normal pressure. Transmission electron micrographs showed that the re. sulting lanthanide hydrides were in the form of nanoparticles. The rate of hydrogenation decreased with increasing atomic number of the rare-earth elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered mesoporous carbons composed of arrays of nanotubes have been synthesized using ordered mesoporous silica templates via catalytic chemical vapor deposition. The ordered carbons possess bimodal pores, namely, the pores arise from the "replica" of frameworks of the template and the pores correspond to carbon nanotubes formed in the channels of the template (see Figure).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic decomposition of NO over Ag-ZSM-5 catalyst prepared by ion-exchange was investigated. The exchanged silver in the zeolite was reduced and it collected in the course of the reaction to form silver particles of about 20 nm. The catalytic reaction induced a pronounced restructuring of the Ag particles through preferential formation of the (111) facets. These facets were shown to hind a tightly bound oxygen species (O-gamma). The O-gamma species occupies the active sites for NO adsorption resulting in catalyst deactivation. It could be removed by appropriate reducing agents, such as CO, to recover the active sites at elevated temperatures.