575 resultados para POLY(BUTYLENE TEREPHTHALATE)
Resumo:
The blends of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (P(HB-co-HV)/poly(p-vinylphenol)(PVPh) were investigated by differential scanning calorimetry (DSC), Fourier transform IR (FT-IR) spectroscopy and high-resolution solid-state C-13 NMR techniques. Single glass transition temperatures existing in the whole composition range indicates that these blends are miscible. The presence of hydrogen bonding between the hydroxyl of PVPh and carbonyl of P(HB-co-HV), shown by FT-IR spectra, is the origin of the miscibility. Furthermore, results obtained by high-resolution solid-state C-13 NMR give more information about the structure of the blends. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The novel poly(aryl ether ketone)s with liquid crystallinity were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with 4,4'-difluorobenzophenone and their thermotropic liquid crystalline properties were characterized by DSC, PLM and WAXD, The copolymers containing 70% biphenol formed nematic phase while the copolymer containing 50% biphenol exhibited smectic texture, The banded textures were formed after shearing the sample in the nematic liquid crystalline state. The identification of the structures in each mesogenic phase has been carried out by combining WAXD with PLM and DSC.
Resumo:
Structural studies of poly(aryl ether ether ketone ketone) (PEEKK) using small-angle X-ray scattering and one-dimensional electron density correlation function methods revealed that its aggregated state structure was significantly influenced by the annealing temperature. The long period L, the average thickness of the lamellae d, the electron density difference between the crystalline and amorphous regions eta(c) - eta(a), and the invariant Q increased with increasing annealing temperature, but it was opposite to the case of the specific inner surfaces O-s. A transition zone existed between the traditional "two phases" with a dimension about 0.5 nm for semicrystalline PEEKK. (C) 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1829-1835, 1998.
Resumo:
A new monomer, sodium 5,5'-carbonylbis(2-fluorobenzenesulfonate) (1), was synthesized by sulfonation of 4,4'-difluorobenzophenone (2) with fuming sulfuric acid. Poly(ether ether ketone)s containing sodium sulfonate groups were synthesized directly via aromatic nucleophilic substitution from the sodium sulfonate-functionalized monomer 1 and Bisphenol A (3) in the presence of potassium carbonate in dimethyl sulfoxide. The polycondensation proceeds without any side reactions. The differential scanning calorimetry measurement indicated that the polymers are amorphous and the glass transition temperatures increase with the content of sodium sulfonate groups in the polymer chain. The degree of substitution with sodium sulfonate groups has strong influence on their thermal stability and solubility.
Resumo:
The compositions and structures of interpolymer complexes formed by mixing phenoxy resin (PHEB) and poly (4-vinylpyridine) (P4VPy) in chloroform have been studied by means of elemental analysis, DSC, FTIR, UV and XPS, In the meantime, the corresponding blends prepared have been characterized and compared. The results show that compositions of the complexes were identical with the ratio of equimolar interactive units. All blends were miscible and their compositions were related to the feed ratios. Based on the experimental results, process of formation of the complex is depicted.
Resumo:
Flory solution theory modified by Hamada et al. (Macromolecules, 1980, 13, 729) was used to predict the miscibility of blends of poly(ethylene oxide) with poly(methyl methacrylate) (PEO-aPMMA) and with poly(vinyl acetate) (PEO-PVAc). Interaction parameters of a PEO-aPMMA blend with the weight ratio of PEO/aPMMA = 50/50 at the temperature range of 393-433 K and PEO-PVAc blends with different compositions and temperatures were calculated from the determined equation-of-state parameters based on Flory solution theory modified by Hamada ed al. Results show that interaction parameters of the PEO-aPMMA blend are negative and can be comparable with values obtained from neutron-scattering measurements by Ito et al. (Macromolecules, 1987, 20, 2213). Also, interaction parameters and excess volumes of PEO-PVAc blends are negative and increase with enhancing the content of PEO and the temperature. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Copolymers containing alternating flexible aliphatic blocks and rigid poly(p-phenylenevinylene) (PPV) blocks were synthesized and characterized. It was found that the fluorescent intensity increases with increasing length of the flexible blocks. Bright blue-light emitting diodes were fabricated using PPV copolymers as electroluminescent layers. The devices show 190 cd/m(2) light-emitting brightness at 460 nm and 15 V rum-on voltage. The effects of oxadiazole derivative PBD and tris(8-hydroxyquinoline) aluminum Alq(3) electron-transporting layers on the luminance and stability of the devices are discussed.
Resumo:
Novel morphology of ring-banded spherulites in the surface of poly(epsilon-caprolactone)/poly(styrene-co-acrylonitrile) (PCL/SAN) blends was discovered and studied by SEM and TEM. The ring-banded spherulites separate into those exhibiting a very dark contrast, of relatively regular bundles of lamellae and others appearing with a much brighter intensity, of a coarse and irregular aggregates of lamellae. The origin of the novel morphology is not due to different crystalline structures as in the case of isotactic polypropylene because only one crystal structure exists in PCL/SAN blends. The formation may reflect whether spherulites in PCL/SAN blends are nucleated at the bottom surface or at the top (free) surface.
Resumo:
Kinetics of nonisothermal crystallization of poly( beta-hydroxybutyrate) from melt and glassy states were performed by differential scanning calorimetry under various heating and cooling rates. Several different analysis methods were used to describe the process of nonisothermal crystallization. The results showed that both Avrami treatment and a new method developed by combining the Avrami equation and Ozawa equation could describe this system very well. However, Ozawa analysis failed. By using an evaluation method, proposed by Kissinger, activation energies have been evaluated to be 92.6 kJ/mol and 64.6 kJ/mol for crystallization from the glassy and melt state, respectively. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Ring-banded spherulites in crystallization of poly(epsilon-caprolactone) and poly (styrene-random-acrylonitrile) blends were observed with polarizing optical microscopy and digital image analysis technique was applied directly to the image obtained by polarizing microscope, Several new interesting phenomena were found. One is that the ring-banded structure is still clearly seen after the analyzer was removed and this astonished phenomenon couldn't result from the general concept about formation mechanism of ring-banded spherulite - lamellae twisting, Another one is that there is a slight, dark line in the bright band when cross polars were added, which may be related to the formation process and mechanism of ring-banded spherulites in the blends of poly (epsilon-caprolactone) and poly (styrene-random-acrylonitrile).
Resumo:
Novel poly(aryl ether ketone)s were synthesized by nucleophilic substitution reactions of difluoromonomer with 4,4'-biphenol and substituted hydroquinone. The results showed that the novel polymers exhibited multiple phase transitions and formed optical birefringence textures above their melting transitions.
Resumo:
A numerical method to estimate temperature distribution during the cure of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based composite is suggested. The effect of the temperature distribution on the selection of cure cycle is evaluated using a suggested alternation criterion. The effect of varying heating rate and thickness on the temperature distribution, viscosity distribution and distribution of the extent of cure reaction are discussed based on the combination of the here-established temperature distribution model and the previously established curing kinetics model and chemorheological model. It is found that, for a thin composite (<=10mm) and low heating rate (<=2.5K/min), the effect of temperature distribution on cure cycle and on the processing window for pressure application can be neglected. Low heating rate is of benefit to reduce the temperature gradient. The processing window for pressure application becomes narrower with increasing thicknesses of composite sheets. The validity of the temperature distribution model and the modified processing window is evaluated through the characterization of mechanical and physical properties of E-PEK-based composite fabricated according to different temperature distribution conditions.
Resumo:
The shear fracture morphology of SCF/PEK-C composite with carbon fibers treated for different times was studied carefully by SEM. The result shows that the adhesion between fiber and matrix was improved and fractured model also changed from interface fracture to brittle fracture with increasing treatment time of carbon fiber. The fracture mechanism was discussed preliminary.
Resumo:
The poly(monoester (6-[4-(p-nitrophenyl) azo]phenoxy-1-hexyloxy) of maleic anhydride) shows a smectic phase with a focal conic fan texture. With the decrease of the monoestering degree the phase transition temperature decreases and the mesomorphic temperature range becomes narrow. The hydrogen bonding between two carboxylic acid groups was found to play a very important role in forming the smectic phase structure. The smectic bilayer structure has been built through self-assembly via. intermolecular hydrogen bonding.