632 resultados para Tian
Resumo:
In this work, glycyrrhetinic acid-modified chitosan (mGA-suc-CTS) used as liver targeted carrier for drug delivery, was prepared via hemisuccinate as a bridged group. The structure of the product was confirmed by IR and NMR methods and the degree of substitution (DS) of glycyrrhetinic acid groups was estimated via elemental analysis. Nanoparticles were formed by ionic gelation methold. The drug-loading and release behavior of the nanoparticles were investigated using BSA as the model drug. The results indicated that the carrier with a highest DS of 5.19% could be got and the DS was controlled by changing reaction temperature or feed ratio. BSA could be entrapped into the nanoparticles with the drug-loading ratio of 26.3% and the encapsulation efficiency of 81.5%. A sustained release over an 11-day period was observed in pH 7.4 in vitro.
Resumo:
Background The application of polyethylenimine (PEI) in gene delivery has been severely limited by significant cytotoxicity that results from a nondegradable methylene backbone and high cationic charge density. It is therefore necessary to develop novel biodegradable PEI derivates for low-toxic, highly efficient gene delivery.Methods A series of novel cationic copolymers with various charge density were designed and synthesized by grafting different kinds of oligoethylenimine (OEI) onto a determinate multi-armed poly(L-glutamic acid) backbone. The molecular structures of multi-armed poly(L-glutamic acid)-graft-OEI (MP-g-OEI) copolymers were characterized using nuclear magnetic resonance, viscosimetry and gel permeation chromatography. Moreover, the MP-g-OEI/DNA complexes were measured by a gel retardation assay, dynamic light scattering and atomic force microscopy to determine DNA binding ability, particle size, zeta potential, complex formation and shape, respectively. MP-g-OEI copolymers were also evaluated in Chinese hamster ovary and human embryonic kidney-293 cells for their cytotoxicity and transfection efficiency.
Resumo:
Two series of oligothiophenes (OThs), NaTn and TNTn (n = 2-6 represents the number of thiophene rings), end-capped with naphthyl and thionaphthyl units have been synthesized by means of Stille coupling. Their thermal properties, optical properties, single crystal structures, and organic field-effect transistor performance have been characterized. All oligomers display great thermal stability and crystallinity. ne crystallographic structures of NaT2, NaT3, TNT2, and TNT3 have been determined. The crystals of NaT2 and NaT3 are monoclinic with space group P2(1)/C, while those of TNT2 and TNT3 are triclinic and orthorhombic with space groups P-1(-) and P2(1)2(1)2(1), respectively. All oligomers adopt the well-known herringbone packing-mode in crystals with packing parameters dependent on the structure of the end-capping units and the number of thiophene rings. The shorter intermolecular distance in NaT3 compared to NaT2 indicates that the intermolecular interaction principally increases with increasing molecular length. X-ray diffraction and atomic force microscopy (AFM) characterization indicate that the NaTn oligomers can form films with better morphology and high molecular order than TNTn oligomers with the same number of thiophene rings. The NaTn oligomers exhibit mobilities that are much higher than those for TNTn oligomers (0.028-0.39 cm(2) V-1 s(-1) versus 0.010-0.055 cm(2) V-1 s(-1), respectively).
Resumo:
A series of monodisperse oligo(9,9-di-n-octylfluorene-co-bithiophene)s (OFbTs) with molecular lengths of up to 19.5 nm and molecular weights up to 7025 g mol(-1) has been synthesized by a divergent/convergent approach involving Stille coupling reactions. Stille coupling is quite efficient in preparing this class of oligomers, and even the molecule with nine fluorene units and eight bithiophene units (F9Th16) can be synthesized in a yield as high as 70%. Because of easy functionalization of the thiophene ring at its alpha position, no additional protecting group allowing activation for further reaction is necessary. However, the synthetic routes must be optimized to eliminate contamination of the targeting compounds with the homocoupling product of the organotin reagents. Synthesis of the longest oligomer F13Th24 in a relative large quantity is limited by its low yield due to the pronounced ligand-exchange side reactions of the starting materials and reaction intermediates. All oligomers longer than F4Th6 are nematic mesomorphs and exhibit enhanced glass transition temperature and clearing point with increasing molecular length, as revealed by differential scanning calorimetry and polarizing optical microscopy.
Resumo:
A series of monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s (OFVs) with fluorene units up to 11 has been synthesized following a divergent approach. Chain length was found to affect not only photophysical properties but also thermal properties. Absorption and photoluminescence spectra are red-shifted with increasing chain length. The effective conjugated length has been extrapolated to be as long as 19 fluorene vinylene units, indicative of a well-conjugated system. With the number of fluorene units > 5, the oligomers exhibit nematic mesomorphism. Glass transition temperature (T-g) and clearing point temperature (T-c) increase with increasing molecular length and with those of OFV11 up to 71 and 230 degrees C, respectively. The oligomers can form uniform films by solution casting for fabrication of light-emitting diodes. With a device structure of ITO/ PEDOT:PSS/OFV11/Ca/Al, a current efficiency of 0.8 cd.A(-1) at a brightness of 1300 cd.m(-2) along with a maximum brightness of 2690 cd.m(-2) have been realized. This performance is notably superior to that of the corresponding polymer.
Resumo:
The relationship between the performance characteristics of organic field-effect transistors (OFETs) with 2,5-bis(4-biphenylyl)-bithiophene/copper hexadecafluorophthalocyanine (BP2T/F16CuPc) heterojunctions and the thickness of the BP2T bottom layer is investigated. Three operating modes (n-channel, ambipolar, and p-channel) are obtained by varying the thickness of the organic semiconductor layer. The changes in operating mode are attributable to the morphology of the film and the hetero-junction effect, which also leads to an evolution of the field-effect mobility with increasing film thickness. In BP2T/F16CuPc heterojunctions the mobile charge carriers accumulate at both sides of the heterojunction interface, with an accumulation layer thickness of ca. 10 nm. High field-effect mobility values can be achieved in continuous and flat films that exhibit the heterojunction effect.
Resumo:
In this paper, five Pt3Sn1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt3Sn1P2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt3Sn1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm(-2) that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.
Resumo:
It is reported for the first time that the slow electrochemical kinetics process for the electro-oxidation of ethanol can be promoted by changing the electrochemical environment. The electro-oxidation of ethanol at a Pt electrode in the presence of Eu3+ cations was studied and an enhancement effect was exhibited. Cyclic voltammetry experiment results showed that the peak current density for the electro-oxidation of ethanol was increased in the presence of EU3+ in the ethanol solution. A preliminary discussion of the mechanism of the enhancement effect is given. This is based on a CO stripping experiment, which shows that either the onset potential or the peak potential of CO oxidation is shifted negatively after adding Eu3+ to the solution.