570 resultados para Tb3 doped
Resumo:
The analytic solutions of coupled-mode equations of four-wave mixings (FWMs) are achieved by means of the undepleted approximation and the perturbation method. The self-stability mechanism of the FWM processes is theoretically proved and is applicable to design a new kind of triple-wavelength erbium-doped fiber lasers. The proposed fiber lasers with excellent stability and uniformity are demonstrated by using a flat-near-zero-dispersion high-nonlinear photonic-crystal-fiber. The significant excellence is analyzed in theory and is proved in experiment. Our fiber lasers can stably lase three waves with the power ripple of less than 0.4 dB. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel dual-wavelength (DW) sampled fiber Bragg grating (SFBG) is proposed and demonstrated for the first time to the author's best knowledge. This kind of SFBG can realize a DW operation with uniform reflection peaks rather than multiple nonuniform peaks shown in conventional SFBGs. Based on the designed SFBG, we have proposed a novel L-band DW erbium-doped fiber laser, which has such a unique merit that the spacing of the two wavelengths keeps unchanged during tuning laser.
Resumo:
We demonstrate a harmonic mode-locked ytterbium-doped fibre ring laser, which consists of a polarization-sensitive isolator, two polarization controllers, two 976 nm laser diodes as the pump source and a two-segment ytterbium-doped fibre. Utilizing an additive pulse mode-locked technique based on nonlinear polarization evolution, the ytterbium-doped fibre laser can operate in mode-locked state by adjusting the position of polarization controllers. The cavity fundamental repetition rate is 23.78 MHz. We also observe the second- and third-harmonic mode locking in the normal dispersion region, and their repetition rates are 47.66 MHz and 71.56 MHz, respectively. Over-driving of the saturable absorber in the harmonic mode-locking pulse is analysed and discussed in detail.
Resumo:
We report the generation of ultrashort pulses in ytterbium-doped fibre oscillator emitting around 1.05 mum at a repetition rate of 17.6MHz. A diode laser with single silica fibre at 976 nm pumps the ytterbium fibre laser, the all-fibre picosecond pulsed oscillator has excellent stability and compact size, and freedom from misalignment. After amplifying, pulse energy of 3.4 nJ and an average power of 60mW are obtained. The compression is obtained with a grating pair out of the cavity. The compressor produces 307 fs with the peak power 5.47 kW. A practical fibre-based source with good performance is thus demonstrated.
Resumo:
On the basis of self-stability effect of four-wave mixings (FWMs) in high-nonlinear photonic-crystal fibres, a novel multi-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated experimentally at room temperature. The proposed lasers have the capacity of switching and tuning with excellent uniformity and stability. By means of adjusting the attenuators, the triple-, four-, or five-wavelength EDF lasers can be lasing simultaneously. With the assistance of the FWM self-stability function, the multi-wavelength spectrum is excellently stabilized with uniformity less than 0.9 dB.
Resumo:
Often it is assumed that absorbance decays in photochromic materials with the time dependence of the photochemical kinetics, i.e. exponentially for first order kinetics. Although this may hold in the limiting case of vanishing absorbance, deviations are to be expected for realistic samples, because the local photochemical kinetics slows down with increasing initial absorption and penetration depth of the radiation. We discuss the theory of the kinetics of initially homogeneous photochromic samples and derive analytical solutions. In extension of Tomlinson's theory we find an analytical solution that holds with good approximation even for samples that exhibit a small residual absorption in the saturation limit. The theoretical time dependence of the absorbance originating from photochemical first order kinetics of dye-doped systems is compared with experimental data published by Lafond et al. for fulgides doped in different polymer matrices. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
With the assistance of a kind of photonic Robin Hood that is originated from four-wave mixing in a dispersion-flattened high-nonlinearity photonic-crystal fibre, a novel dual-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated by using a sampled fibre Bragg grating. The experiments show that, due to the contribution of the photonic Robin Hood, the proposed fibre laser has the advantage of excellent uniformity, high stability and stable operation at room temperature. Our dual-wavelength EDF laser has the unique merit that the wavelength spacing remains unchanged when tuning the two wavelengths of laser, and this laser is simpler and more stable than the laser reported by Liu et al. [Opt. Express, 13 142 (2005)].
Resumo:
Using a home-made seed at 1053 nm from a Yb3+-doped passively mode-locked fiber laser of 1.5 nJ/pulse, 362 ps pulse duration with a repetition rate of 3.842 MHz, a compact, low cost, stable and excellent beam quality non-collinear chirped pulse optical parametric amplifier omitting the bulky pulse stretcher has been demonstrated. A gain higher than 4.0 x 10(6), single pulse energy exceeding 6 mJ with fluctuations less than 2% rms, 14 nm amplified signal spectrum and recompressed pulse duration of 525 fs are achieved. This provides a novel and simple amplification scheme. (c) 2007 Optical Society of America.
Resumo:
National Natural Science Foundationa of China(602537060,60408002)
Resumo:
Nankai University