460 resultados para catalytic oxidative cracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly active catalyst, MnOx/TiO2-Al2O3, was prepared by impregnating MnOx species on TiO2-modified Al2O3. The TiO2 species in TiO2-Al2O3 support is in a monolayer dispersion, and the MnOx species is again highly dispersed on TiO2-Al2O3 Support. The total oxidation of chlorobenzene and o-dichlorobenzene on MnOx/TiO2-Al2O3 catalyst can be achieved at 300 degreesC and 250 degreesC respectively, at the space velocity of 8000 h(-1). The activity of MnOx/TiO2-Al2O3 catalyst (Mn loading 11.2 wt%) is gradually increased in the first 10-20 h and then keeps stable at least for the measured 52 h at 16,000 h(-1). Furthermore, no chlorinated organic byproducts are detected in the effluent during the oxidative destruction of chlorobenzene and o-dichlorobenzene. It is proposed that the partially chlorinated and highly dispersed manganese oxide on a monolayer TiO2-modified Al2O3 is responsible for the high and stable activity for the total oxidation of chlorinated aromatics. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total oxidation of chlorinated aromatics on supported manganese oxide catalysts was investigated. The catalysts have been prepared by wet impregnation method and characterized by XRD and TPR. Among the catalysts with the supports of TiO(2), Al(2)O(3) and SiO(2), titania supported catalyst (MnO(x)/TiO(2)) gives the highest catalytic activity. MnO(x)/TiO(2) (Mn loading, 1.9 wt.%) shows the total oxidation of chlorobenzene at about 400 degreesC. The activity can be stable for over 82 h except for the first few hours. At lower Mn loadings for MnO(x)/TiO(2), only one reduction peak appears at about 400 degreesC due to the highly dispersed manganese oxide. With the increase of Mn loading, another reduction peak emerges at about 500 degreesC, which is close to the reduction peak of bulk Mn(2)O(3) at 520 degreesC. TPR of the used catalyst is totally different from that of the fresh one indicating that the chemical state of the active species is changed during the chlorobenzene oxidation. The characterization studies of MnO(x)/TiO(2) showed that the highly dispersed MnO(x) is the precursor of the active phase, which can be converted into the active phase, mainly oxychlorinated manganese (MnO(y)Cl(z)), under working conditions of chlorobenzene oxidation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam reforming of ethanol over CuO/CeO2 was studied. Acetaldehyde and hydrogen were mainly produced at 260degreesC. At 380degreesC, acetone was the main product, and 2 mol of hydrogen was produced from 1 mol of ethanol. The formation of hydrogen accompanied by the production of acetone was considered to proceed through the following, consecutive reactions: dehydrogenation of ethanol to acetaldehyde. aldol condensation of the acetaldehyde, and the reaction of the aldol with the lattice oxygen [O(s)] on the catalyst to form a surface intermediate, followed by its dehydrogenation and decarboxylation. The overall reaction was expressed by2C(2)H(5)OH + H2O --> CH3COCH3 + CO2 + 4H(2). Ceria played an important role as an oxygen supplier. The addition of MgO to CuO/CeO2 resulted in the production of hydrogen at lower temperatures by accelerating aldol condensation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co3O4 nanocrystals with average particle sizes of 30 and 50 run were synthesized using cobalt nitrate as precursor, and were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. Catalytic oxidation of cyclohexane with molecular oxygen was studied over Co3O4 nanocrystals. These catalysts showed obviously higher activities as compared to Co3O4 prepared by the conventional methods, Co3O4/Al2O3, or homogeneous cobalt catalyst under comparable reaction conditions. The 89.1% selectivity to cyclohexanol and cyclohexanone at 7.6% conversion of cyclohexane was realized over 50 nm sized Co3O4 nanocrystals at 393 K for 6 h. (c) 2005 Elsevier B.V. All rights reserved.